If you’re a data scientist, machine learning engineer, or data engineer, you know the challenges of deploying a successful machine learning (ML) model. Difficulties in testing models and the iterative process of training, testing, and validating a model can be a tedious process that continues long after deployment to production. This can mean serious consequences for your team and business, as failure to detect and address low performance can mean the difference between a model that delivers exceptional performance over time and one that fails to deliver business value.
That’s why New Relic is partnering with Comet to bring you an integration that extends full-stack observability to machine learning models and allows you to establish production performance baselines based on model performance.
In the following short demo, you’ll see how you can integrate machine learning metrics with New Relic’s integration with Comet to continually monitor your data across the full machine learning lifecycle. This helps ensure optimal model performance and can help you achieve better business outcomes.
Why should you integrate Comet with New Relic One?
Comet is an MLOps platform that enables teams to automatically monitor machine learning experiments and models in production with just a few lines of code.
The New Relic integration with Comet empowers you to:
- Observe: Retrain your models faster by observing your models from production to deployment.
- Debug: Use powerful code-based metrics and visualizations to debug faster.
- Review: Detect issues and address performance degradation, data drift, and potential bias by reviewing your ML metrics.
- Validate: Compare models in production against their baselines during training to validate performance.
- Adapt: React to changes in performance caused by model drift.
- Correlate: Correlate ML production issues with the rest of your software and infrastructure stack.
- Collaborate: Work across teams seamlessly by breaking down the silos between data scientists and developers to ensure the accuracy of models in production, all in one place.
You’ll get data and insights to help build better, more accurate ML models while also improving productivity, collaboration, and visibility across your team.
Integrating Comet with New Relic One
To set up the Comet integration, you need a New Relic One account. If you don’t already have one, sign up for a forever free account.
1. Log in to one.newrelic.com, go to the Explorer page, and select + Add more data.
2. Select Comet from the MLOps Integration section.
3. Select your New Relic Account ID.
4. Create or select an existing Insight API key from the Real Time Training Metric section.
5. Contact comet at sales@comet.ml to set up the integration and view their MPM Dashboard. You will need the Insight API Key.
6. View the Comet dashboard in New Relic to start tracking the performance of your machine learning models in New Relic.
Next steps
For more information on how to set up New Relic MLOps or integrate Comet in your observability infrastructure, visit the New Relic MLOps docs page.
If you’re new to New Relic but interested in digging in, experience the simplicity of New Relic One yourself by signing up for a forever free account.
Curious in more Nerd Life articles for New Relic culture and how we've helped customers? Start your Nerd Life journey with our read on AWS and our case study with ZenHub.
The views expressed on this blog are those of the author and do not necessarily reflect the views of New Relic. Any solutions offered by the author are environment-specific and not part of the commercial solutions or support offered by New Relic. Please join us exclusively at the Explorers Hub (discuss.newrelic.com) for questions and support related to this blog post. This blog may contain links to content on third-party sites. By providing such links, New Relic does not adopt, guarantee, approve or endorse the information, views or products available on such sites.