
Whitepaper

Reducing MTTR the Right Way
Best practices for fast
incident resolution

Reducing MTTR the Right Way: Best practices for fast incident resolution

2

Introduction
MTTR—or mean time to resolution—is one of the
most widely used metrics in the systems reliability
toolbox. Paradoxically, it’s also one of the most
misunderstood metrics; many developers and op-
erations teams lack a clear vision for how to define
MTTR, how to use it, and how to improve it in a con-
sistent and sustainable way.

As modern organizations increasingly rely on soft-
ware to run their businesses, these disconnects
around MTTR aren’t just inconvenient; they threat-
en the bottom line by potentially disrupting the in-
creasingly important digital customer experience,
not to mention adding significant cost, risk, and
complexity to the software development process.

The key to avoiding these problems is to adopt a
progressive approach to defining and applying
MTTR—one that combines comprehensive instru-
mentation and monitoring; a robust and reliable
incident-response process; and a team that un-
derstands how and why to use MTTR to maximize
application availability and performance. To help
you do that, New Relic has collected 10 best prac-
tices for reducing MTTR the right way—all in the
context of building a healthy incident-response
strategy. We’ll also explain how the New Relic plat-
form supports a DevOps team’s MTTR-reduction
goals in a number of very important ways.

The many meanings of MTTR
The challenges around MTTR begin with how to de-
fine the term. Its original, Industrial Age meaning
addressed machine maintenance: mean time to
repair referred to the time required to fix a piece of
machinery, a device, or a facility’s physical plant.

In today’s software-defined world, MTTR common-
ly stands for “mean time to restore” or “mean time
to resolution.” While the distinction may seem trivi-

al, these definitions focus on different outcomes
and reflect two very different approaches to deal-
ing with software performance issues:

• Mean time to restore (sometimes called mean
time to recovery) is the digital equivalent of
mean time to repair: the time required to get an
application back into production following a
performance issue or downtime incident.

• Mean time to resolution, on the other hand, fo-
cuses more on the big picture: It addresses the
time required to fix a problem and to implement
subsequent “clean ups” or proactive steps de-
signed to keep the problem from recurring. A
team must address both of these tasks before it
can declare an issue resolved.

This second, more comprehensive, definition of
MTTR demands the ability to find and fix the under-
lying causes of performance issues. It deliberately
avoids quick-fix solutions that may solve the im-
mediate problem—but that fail to prevent the
problem from happening again.

MTTR is a statistic—not a silver bullet
Remember that MTTR is a mean, or average, statis-
tical value. Learning how to use it effectively means
also learning its limitations:

MTTR is more useful as a “turnkey” metric when
incidents (and resolutions) tend to be similar. If
you often deal with outlier incidents that vary
widely in terms of the time required to resolve them,
MTTR on its own may present a distorted view of
your true response capabilities.

Similarly, it’s easy to forget that MTTR (perhaps
surprisingly) doesn’t take time into account. An
MTTR calculation, for example, can’t capture the
critical difference between incidents that impact
your systems and applications during peak times
versus those that happen during quiet times.

https://blog.newrelic.com/technology/digital-customer-experience-dcx-definition/
https://newrelic.com/products
https://newrelic.com/products

Reducing MTTR the Right Way: Best practices for fast incident resolution

3

Neither of these points negates the value of MTTR,
but it’s important to think about the downside of
relying too much on a single metric.

Two best practices for using MTTR can go a long
way towards minimizing these risks:

1. Use MTTR in conjunction with other metrics
to tell a more complete, accurate, and nu-
anced story of application and infrastruc-
ture performance. An “error budget” metric is
one way to accomplish this. An error budget
may specify, for example, that one minute
during peak time is equal to one hour during
non-peak time. Used alongside MTTR, an er-
ror-budget metric helps you understand the
true cost and impact of downtime, and there-
fore understand the value of gains or losses in
your MTTR trends.

2. Validate your efforts to reduce MTTR by fo-
cusing on resolving incidents and maximiz-
ing availability. As noted, resolving an appli-
cation failure means getting to the bottom of
a problem—finding the responsible service or
infrastructure component, and coming up
with a durable solution. That’s often signifi-
cantly different than a quick fix designed to
address the immediate issue, but not to un-
cover the true source of an incident or all of its
contributing factors.

Thinking in terms of availability helps to keep the
focus on finding durable, long-term solutions to
application performance problems. Availability
puts a premium on preventing recurring issues
and on thinking about how an issue impacts your
digital customer experience—even if this approach
yields solutions that are more costly and take lon-
ger to implement than a short-term fix.

Incident response: your key
to a winning MTTR strategy
Once you understand the ground rules for using
MTTR wisely, the next step is to learn how modern
DevOps teams improve their incident resolution
times—and how they lock in those improvements
once they achieve them?

Typically, DevOps teams need three core capabili-
ties:

1. Proactive anomaly detection, quick incident
response and resolution, and workflows that
accelerate the remediation process

2. A unified source of multi-dimensional insights
into application and infrastructure health and
performance that provides context about the
entire software system

3. A commitment to move the needle on long-
term service reliability—increasing the odds
that when a problem gets fixed, it stays fixed

Technology plays an essential role in achieving
these capabilities, but technology alone isn’t
enough to win this battle. You need a strategy that
combines technology, rock-solid resolution pro-
cesses, and your team members’ individual talents
and skill sets.

Your incident response process is the place where
all of these elements converge. Incident response
covers every point in a chain of events that begins
with the discovery of an application or infrastruc-
ture performance issue, and that ends with learn-
ing as much as possible about how to prevent is-
sues from happening again. It covers every aspect
of a solid strategy for reducing MTTR, and it ensures
that your team can continue to improve even as
your business and applications scale.

Reducing MTTR the Right Way: Best practices for fast incident resolution

4

The keys to creating a best-in-class
incident response process
Talking about incident response begins with a
question: What defines an incident? The answer is
essential, since the incident-response clock starts
to tick the moment an incident is discovered.

New Relic defines an incident as an application or
infrastructure performance issue that meets three
criteria:

1. It’s high stakes to the business. Incidents im-
pact customers, directly or indirectly.

2. It’s urgent. Incidents must be resolved imme-
diately. During an incident, teams are solving
a problem under time pressure, and they have
to function differently than their day-to-day
engineering activities.

3. It involves collaboration. Significant inci-
dents typically require collaboration between
multiple people, often from several parts
of an organization. Coordinating everyone
during a high-stakes, high-pressure event
requires a particular kind of management
response—and it can incur costs that should
be accounted for in the teams’ budget.

Based on how New Relic deals with incidents, these
10 best practices are designed to help teams
reduce MTTR by helping you step up your incident
response game:

1. Create a robust
incident-management
action plan

At the most basic level, teams need a clear escala-
tion policy that explains what to do if something
breaks: whom to call, how to document what’s
happening, and how to set things in motion to
solve the problem.

Most organizations choose from three common in-
cident-management strategies:

1. Ad hoc. Younger, smaller companies typically
use this approach. When an incident occurs,
the team figures out who knows that technol-
ogy or system best and assigns a resource to
fix it. There’s not a lot of structure—and that’s
exactly the point.

2. Rigid. This is the traditional information tech-
nology systems management (ITSM) ap-
proach often used by larger, more conven-
tionally organized enterprises. IT is generally
in charge of incident management in this kind
of structure. Change management concerns
are paramount, and teams must follow very
strict procedures and protocols. In this case,
structure isn’t a burden—it’s a benefit.

3. Fluid. This is the approach that many modern
companies—especially companies that have
undergone digital transformations—take. Re-
sponses are shaped to the specific nature of
individual incidents, and they involve signifi-
cant cross-functional collaboration and train-
ing to solve problems more efficiently. This ap-
proach is based on Lean principles of constant
experimentation and learning, so response
processes evolve continuously over time.

The fluid approach is typically favored by modern
software companies, unless there’s a specific rea-
son to use either the rigid or ad hoc models. A fluid
incident response model allows companies to
marshal the right resources and to call upon team
members with the right skills to address situations
in which it’s often hard to know at first exactly what
is happening—or what capabilities might be nec-
essary to solve the problem.

As teams learn more about a problem, a fluid ap-
proach also makes it easier to come up with cre-
ative solutions to challenging new problems.

https://www.lean.org/WhatsLean/Principles.cfm
https://blog.newrelic.com/technology/modern-software-company/
https://blog.newrelic.com/technology/modern-software-company/

Reducing MTTR the Right Way: Best practices for fast incident resolution

5

2.	 Define	roles	in	your	
incident-management
command structure

At New Relic, we designate an incident commander
to play a key role at every step of the incident-
response process, acting as a centralized point of
leadership during incidents and helping teams
make essential trade-offs during the response
process. The incident commander is responsible
for directing both the engineering and communi-
cation responses (the latter involves engaging
with customers, both to gather information and to
pass along updates about the incident and our re-
sponse to it). The incident commander makes sure
that the right people are aware of the issue.

Some companies assign semi-permanent inci-
dent commander roles, while others rotate staff
members into the role. At New Relic, any engineer
can be an incident commander, since the first per-
son to respond to a customer-impacting alert will
typically assume that role.

Each incident may also require a technical lead
and a communications lead, each of whom re-
ports to the incident commander. The technical
lead, not the incident commander, typically dic-
tates the specific technical response to a given in-
cident. In some cases, you may need more than
one technical lead, depending on how many sys-
tems are impacted. The technical lead should be
an expert on the system(s) involved in an incident,
allow them to make informed decisions and to as-
sess possible solutions, so they can speed resolu-
tion and optimize the team’s MTTR performance.

The communications lead usually hails from the
customer service team. This person understands
the likely impact on customers and shares these
insights with the incident commander. At the same

time, as information flows in the opposite direction,
the communications lead decides the best way to
keep customers informed of the efforts to resolve
the incident.

3. Train the entire team
on different roles
and functions

To maximize the benefits of a fluid model, it makes
sense to invest in cross-training for engineers so
they can assume multiple incident-response roles
and functions. There’s always a need for special-
ists on specific systems and technologies, but rely-
ing too heavily on a handful of specialists is a reci-
pe for burnout—and staff turnover. Other members
of the team should build enough expertise to ad-
dress most issues, allowing your specialists to fo-
cus on the most difficult and urgent incidents.
Comprehensive “runbooks” (see best practice #7)
can be a great resource for gathering and trans-
ferring specialized technical knowledge within
your engineering team.

Cross-training and knowledge transfer also helps
you to avoid one of the most dangerous incident-
response risks: situations in which one person is
the only source of knowledge for a particular sys-
tem or technology. If that person goes on vacation
or abruptly leaves the organization, critical sys-
tems can turn into black boxes that nobody on the
team has the skills or knowledge to fix.

Look around your engineering organizations, as-
sess your dependencies on specific individuals,
and put redundancies in place to eliminate these
knowledge bottlenecks—just as you do with your
systems resources.

Reducing MTTR the Right Way: Best practices for fast incident resolution

6

4. Monitor, monitor, monitor
It’s a truism that you can’t fix something if you don’t
know it’s broken. Getting proper visibility into your
applications and infrastructure will make or break
any incident response process.

Consider an example of a troubleshooting process
without monitoring data: a server hosting a critical
database or application goes down, and the only

“data” available to diagnose the problem is the lack
of a power light on the front of the server. The re-
sponse team is forced to diagnose and solve the
problem with a heavy dose of guesswork—likely
leading to a long and costly repair process, and al-
most certainly an unacceptably long MTTR.

Compare this scenario with one where real-time
monitoring data flows from the application, server
and related infrastructure—giving the team an ac-
curate read on server load, memory and storage
usage, response times, and other metrics. The
team can formulate a theory about what is caus-
ing a problem and how to fix it using hard facts
rather than guesswork.

In addition, teams can use monitoring data to as-
sess the impact of a solution as it’s being applied,
and to move quickly from diagnosing to resolving
an incident. This is a powerful one-two combina-
tion, making monitoring perhaps the single most
important way to promote an efficient and effec-
tive incident-resolution process and reduce MTTR.

5. Leverage AIOps
capabilities to detect,
diagnose, and resolve
incidents faster

A new set of technologies has emerged in the past
few years that enables on-call teams to harness AI
and machine learning (ML) capabilities so they can

prevent more incidents and respond to them fast-
er. Gartner coined the term “AIOps” (Artificial Intelli-
gence for IT Operations) to describe this category.
AIOps uses AI and machine learning to analyze
data generated by software systems in order to
predict possible problems, determine the root
causes, and drive automation to fix them.

AIOps complements your monitoring practices by
providing an intelligent feed of incident informa-
tion alongside your telemetry data. When you use
that information to analyze and take action on that
data, you’ll be better prepared for troubleshooting
and incident resolution. High-performing DevOps
and SRE teams use AIOps capabilities to respond
to incidents quickly and increase their mean time
between failures.

AIOps can help in four main ways:

1. Proactive detection of anomalies before an
issue hits production or impacts customer ex-
perience or SLOs

2. Noise reduction to help teams prioritize alerts
and focus on the issues that matter most, by
correlating related incidents and enriching
them with metadata and context

3. Intelligent alerting and escalation to auto-
matically route incidents to the individuals or
teams best equipped to respond

4. Automated incident remediation, which in-
cludes workflows to resolve the incident when
it occurs and reduce MTTR

6. Carefully calibrate
your alerting tools

With all the monitoring tools available today, it’s
possible to have too much information about your
systems, which can make it difficult to develop a
clear plan for how to use the data. This is where
programmatic alerting becomes essential.

https://blog.newrelic.com/engineering/what-is-aiops/

Reducing MTTR the Right Way: Best practices for fast incident resolution

7

A practical first step is to set alerts in the form of
thresholds for service level indicators (SLIs). These
are simple metrics or thresholds you can track with
automated monitoring tools, and which indicate
when a serious problem might be happening or is
about to happen. You might say, “If throughput
drops below this threshold, that indicates that
something is wrong somewhere in the system.” Or

“If latency spikes for more than this amount of time,
then we need to look into it.” It’s basically ways to
quantify whether your system is healthy or not.

For example, even if team members don’t know all
the intricacies of a downstream customer-facing
database, they can monitor thresholds and learn
that a problem may be about to occur. When a
system reaches a SLI threshold, it can ping engi-
neers to address the potential incident before cus-
tomer calls and tweets start pouring in. Just make
sure to tune your alert thresholds properly to avoid
alert fatigue—no one likes getting woken up in the
middle of the night unless it’s absolutely necessary.

Also, choose an alerting tool that offers muting
rules, so you can take more control over your alerts
and suppress notifications during times of known
system disruptions, such as maintenance win-
dows, deployments, and during testing.

7. Create runbooks
As you develop incident response procedures and
establish monitoring and alerting practices, be
sure to document everything. Write everything
down and use these notes to create “runbooks”—
documentation that tells on-call responders ex-
actly what to do when a specific problem occurs.

Use runbooks to collect your team’s “tribal knowl-
edge” about a given incident-response scenario in
one document. In addition to helping you reduce
MTTR, runbooks are useful for training new team

members, and they’re especially helpful when
important members of the team leave the organi-
zation.

Keep in mind that a runbook won’t cover every sce-
nario or provide a “recipe” to fix every problem.
There are simply too many variables and too many
unique events to cover every possibility. The idea is
to use a runbook as a starting point—saving time
and energy when dealing with known issues, and
allowing the team to focus on the most challeng-
ing and unique aspects of a problem.

8. Follow up on incidents
to understand how and
why they occurred

Whether you call it a postmortem, an incident ret-
rospective, or a day-after analysis, part of reduc-
ing MTTR involves a strong incident follow-up pro-
cedure. This is when you investigate what
happened, figure out how it happened, identify the
triggering event and likely causes, and strategize
ways to prevent the problem from cropping up
again.

In addition to holding blameless retrospectives,
you may want to institute a don’t-repeat-incidents
(DRI) process. The DRI model involves stopping new
work on a service involved in an incident until you
fix or mitigate the causes. It reinforces the commit-
ment to resolving issues rather than accepting
short-term fixes, helping teams remain fully ac-
countable for closing the loop on the incident res-
olution process. It reminds everyone that quality is
an imperative—not an option.

https://blog.newrelic.com/product-news/muting_rules_new_relic_alerts/
https://blog.newrelic.com/product-news/muting_rules_new_relic_alerts/

Reducing MTTR the Right Way: Best practices for fast incident resolution

8

9. Practice failure through
chaos engineering

Chaos engineering is the practice of attempting to
randomly inject problems into your systems—in a
highly controlled way, of course—so you can test
how resilient your system is. You can use chaos en-
gineering to address such critical questions as:

• Did the system fail in the way you expected?

• Were you able to fix it promptly?

• What did the monitoring data look like?

• How long did it take for the service to be avail-
able again?

Chaos engineering can benefit your organization
in multiple ways. First, teams learn where they may
have opportunities to make systems more avail-
able and more resilient. Chaos engineering exer-
cises can also double as incident-response dress
rehearsals—allowing you to test your processes,
escalations, policies, monitoring and alerting, and
other elements. By removing the friction from ac-
tual incident-response situations, such rehearsals
can have a direct impact on your MTTR perfor-
mance.

10.	Focus	on	the	correct	fix—
not just the fastest one

It can be difficult in the heat of the moment, but
resist the urge to take shortcuts to achieve quick
and easy, but often illusory, MTTR reductions. MTTR
is an average that incorporates all your incident
response times. Today’s “quick and dirty” fix could
contribute to a major, and completely avoidable,
issue in the future. Tackle the underlying causes of
a performance issue now, and you’ll help ensure
that it doesn’t come back to haunt you.

The New Relic platform:
Tools that elevate your
incident response game
The 10 best practices above can help you adopt
and internalize an approach to MTTR based on the
principles of incident response and availability.
And the New Relic observability platform can be a
key to successfully adopting this approach.

The New Relic platform offers monitoring, AIOps,
alerting, incident diagnosis, and other capabilities
that contribute directly to faster, smarter, more effi-
cient incident response; driving significant improve-
ments to MTTR and other performance metrics.

Our comprehensive AIOps capabilities, which we
call New Relic AI, empower your team with intelli-
gence and automation to find, troubleshoot, and
resolve problems faster. New Relic AI enhances the
detection process, automatically surfacing anom-
alies across multiple tools in your stack and sug-
gesting actions to monitor similar conditions in the
future. Best of all, New Relic AI can deliver anomaly
information to you via Slack, enabling you to quick-
ly and collaboratively assess potential problems.

https://blog.newrelic.com/engineering/chaos-engineering-explained/
https://newrelic.com/products/applied-intelligence

Reducing MTTR the Right Way: Best practices for fast incident resolution

9

But we don’t just stop at detecting incidents. New
Relic AI uses a baseline of industry-standard
knowledge, and then learns from your data and
your team’s feedback to intelligently suppress
alerts you don’t care about. New Relic AI also cor-
relates related incidents, enriching those incidents
with valuable metadata and context to help you
diagnose issues faster. You’ll also get useful con-
text about your existing issues, including their clas-
sification based on the “Four Golden Signals” (la-
tency, traffic, errors, and saturation) and correlated
issues from across your environment. Finally, New
Relic AI can even suggests responders and individ-
uals on your team best equipped to handle a spe-
cific incident, so you can reduce the number of
noisy alerts sent to the wrong people.

Tools that keep your response team
fresh, focused, and efficient
Your ability to alert the right people—quickly and
efficiently, using accurate and actionable perfor-
mance insights—can make or break your incident
response strategy. New Relic’s full-stack, program-
matic alerting puts these capabilities, and more,
at team members’ fingertips.

By defining alert conditions based on the results of
custom New Relic Query Language (NRQL) queries,
for example, your team can evolve alerts tied to

specific, high-load system calls. Performance is-
sues at these points can provide leading indicators
of a problem even before it impacts production ap-
plications—giving your team the opportunity to find
and fix problems before they lead to downtime, lost
revenue, and customer complaints.

New Relic Alerts also helps to prevent alert fa-
tigue—a growing problem for incident-response
teams operating in microservices environments.
Flexible alert policies and notification-channel op-
tions give teams greater control over the flow of
alert-incident data, while minimizing “noise” due to
redundant alert conditions.

Tools that assess end-to-end system
performance
In addition, operations teams can use New Relic
Synthetics to close a critical blind spot for many
DevOps teams: monitoring and understanding
end-to-end system behavior. Synthetics gives or-
ganizations a range of options to measure end-
point performance—from sending a simple ping
command to in-depth monitors that run scripts to
simulate complex scenarios. Synthetics also sup-
ports the use of containerized private minions to
monitor internal sites and expand geographic
coverage—raising the bar on security, cloud-read-
iness, and flexibility.

https://docs.newrelic.com/docs/alerts/rest-api-alerts/new-relic-alerts-rest-api/rest-api-calls-new-relic-alerts
https://docs.newrelic.com/docs/alerts/rest-api-alerts/new-relic-alerts-rest-api/rest-api-calls-new-relic-alerts
https://docs.newrelic.com/docs/query-data/nrql-new-relic-query-language/getting-started/introduction-nrql
https://newrelic.com/alerts
https://newrelic.com/products/synthetics
https://newrelic.com/products/synthetics
https://blog.newrelic.com/product-news/containerized-private-minions/

Reducing MTTR the Right Way: Best practices for fast incident resolution

10

Tools that add user experience
insights
In many cases, a fast and successful incident res-
olution requires the ability to adopt a user’s point of
view—whether to understand how an incident im-
pacts user experience or to assess the impact of
user interactions. New Relic Browser achieves this
goal by offering deep visibility and insight into how
users are interacting with an application or web-
site. Browser goes far beyond page-load timing to
address the entire life cycle of a page—from indi-
vidual session performance and AJAX requests to
JavaScript errors and monitoring of single-page
application architectures.

Browser also helps responders to understand the
role that geography plays during an incident: fil-
tering performance metrics and Apdex scores by
global region or state, for example; and maintain-
ing URL-segment whitelists and domain-specific
blocking or monitoring.

Tools that combat complexity
and simplify troubleshooting
Finally, New Relic helps organizations to deal with
the growing complexity of modern, distributed mi-
croservices environments. Complexity is the price
we pay for reaping the benefits of microservices,
but it’s also a major barrier to creating a fast and
efficient incident resolution process.

The New Relic Kubernetes cluster explorer is a
prime example of how New Relic helps to give a
team clarity and visibility into highly complex sys-
tems—even at massive scale. Kubernetes cluster
explorer provides a multi-dimensional representa-
tion of a Kubernetes cluster that lets you zoom into
your namespaces, deployments, nodes, pods,
containers, and applications. The cluster explorer

lets you retrieve the data and metadata of these
elements easily, and to understand how they are re-
lated with the help of highly intuitive visualization tools.

Also, by moving effortlessly between high-level
and highly detailed views, Kubernetes cluster ex-
plorer gives every stakeholder in the process a sin-
gle, shared point of reference for troubleshooting
and understanding the health of a cluster. This can
accelerate your resolution process by getting ev-
erybody on the same page, and eliminating need-
less finger-pointing and miscommunication.

The distributed tracing capabilities in New Relic
APM also help to combat complexity—in this case,
the problems that arise tracing the cause of laten-
cy and other performance issues in distributed ap-
plication architectures. Distributed tracing allows
a team to trace the path of a request as it travels
across a complex system; it reveals the latency of
components along that path; and it shows which
component in the path is creating a bottleneck.

Distributed tracing also leverages the intelligence
built into the New Relic platform—using tools like
anomalous span detection, trace charts, and

https://newrelic.com/products/browser-monitoring
https://docs.newrelic.com/docs/browser/single-page-app-monitoring/get-started/introduction-single-page-app-monitoring
https://docs.newrelic.com/docs/browser/single-page-app-monitoring/get-started/introduction-single-page-app-monitoring
https://docs.newrelic.com/docs/apm/new-relic-apm/apdex/view-your-apdex-score
https://blog.newrelic.com/product-news/microservices-futurestack-new-york-video/
https://blog.newrelic.com/product-news/microservices-futurestack-new-york-video/
https://blog.newrelic.com/technology/microservices-what-they-are-why-to-use-them/
https://newrelic.com/products/infrastructure
https://blog.newrelic.com/product-news/kubernetes-cluster-explorer/
https://blog.newrelic.com/product-news/distributed-tracing-general-availability/
https://newrelic.com/products/application-monitoring
https://newrelic.com/products/application-monitoring
https://docs.newrelic.com/docs/apm/distributed-tracing/ui-data/understand-use-distributed-tracing-data

© Copyright 2020, New Relic, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. 03.2020

custom queries of distributed trace data to help
you isolate, diagnose and troubleshoot problems
quickly and with confidence.

Taking the right approach to MTTR can be a com-
plex and challenging task—that’s the reality of
working with modern application architectures.
But with all of these capabilities (and many others),
the New Relic platform is an essential tool to help
you implement a faster, smoother, and more reliable
incident-resolution process.

Conclusion: Remember
the formula for long-
term success with MTTR
Finally, keep in mind that MTTR is important, but
hardly the only metric for measuring incident
response. Sure, you want to minimize time to reso-
lution, but don’t spend countless people-hours
trying to optimize resolution time and focusing too
much on short-term results.

Instead, put tools like New Relic in place that feed
you a continuous stream of real-time data,
coordinated with carefully calibrated alert policies,
and then use those tools to support a robust inci-
dent-management process. That’s the best for-
mula for systematically and efficiently resolving
incidents. It’s also the best way to continuously
improve your efforts to reduce MTTR —delivering
long-term, sustainable gains in application avail-
ability.

Deliver more perfect
software
Try New Relic One today and start building better,
more resilient software experiences. Learn More

https://docs.newrelic.com/docs/apm/distributed-tracing/ui-data/example-insights-queries-distributed-trace-data
https://newrelic.com/platform

