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The complexity of modern enterprise systems has 
made observability essential for effective operations. As 
organizations adopt cloud-native, hybrid, and distributed 
infrastructures, the ability to process and analyze telemetry 
data in real time is critical for maintaining system reliability, 
performance, and user satisfaction. These evolving demands 
present significant challenges, including the need to ingest, 
store, and query diverse data types at scale, while optimizing 
cost and ensuring operational efficiency.

To address these challenges, the New Relic database 
(NRDB) was developed as a cloud-native, multi-tenant 
database optimized for observability workloads. NRDB 
combines high-performance querying, fault isolation, 
and cost-efficient scalability to meet the requirements of 
dynamic business environments. Its architecture enables 
seamless analysis of diverse data types, including immutable 
telemetry data, mutable business data, and external sources, 
all within a unified framework. These capabilities allow 
NRDB to deliver the reliability and performance needed for 
real-time analytics, supporting the growing requirements of 
modern data ecosystems.

This white paper traces the evolution of NRDB, emphasizing 
how its design has evolved to meet the demands of real-time 
analytics at scale. Through advancements in multi-tenant 
architecture and efficient querying, NRDB exemplifies how 
modern databases are engineered to address the challenges 
of today’s dynamic data environments. 

Introduction
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Evolution from 2014 to Scalability 

In 2014, the NRDB architecture embarked on a path inspired by the 
Dremel paper, aiming to create a massively distributed database system 
for analytics over traditional architectures like simple file storage. At that 
time, no analytical engines could produce query results in sub-seconds. 
The state of the ecosystem then consisted of distributed query engines 
that generated results in minutes when submitted to them as batch jobs. 
Observability (o11y) use cases, however, required more “real-time”  
query results.

To meet these requirements, the NRDB architecture was designed with 
three core goals: ease of use, blazing-fast performance, and a unified 
platform for diverse data types.

Ease of use
The NRDB architecture was designed with user-friendliness in mind. It 
eliminated the need for predefined schemas, index requirements, and 
tables, simplifying the data analytics process and allowing users to focus  
on deriving insights rather than managing database structures.

Speed
Speed was a critical factor, with the architecture aiming for sub-second 
“time to glass” and a median query performance of 50 ms. The goal was to 
enable users to analyze data through an expressive SQL-inspired language 
that allowed for quick and efficient data retrieval without adding a barrier to 
learn a new query language. 

All-in-one solution
NRDB aimed to be a one-stop solution for querying various data types, 
including metrics, events, logs, and traces, all from a single location. This 
holistic approach enabled comprehensive analysis and monitoring across 
different data streams.

New Relic Database 
Architecture 

https://research.google.com/pubs/archive/36632.pdf
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The initial setup involved Java virtual machines (JVMs) on 
a large array of bare metal servers, leveraging solid-state 
drives (SSDs) crammed into the chassis, with a 60-70% 
of the cost attributed to storage. The storage costs were 
ballooned by the practice of storing multiple copies in 
Amazon Simple Storage Service (S3), which was used for 
disaster recovery rather than operational quality of service.

The high-level architecture was quite simple, where we 
had a fleet of workers called insert workers to persist the 
data into S3 and another fleet of workers called query 
workers that would serve queries from storage. To ensure 
consistency between insert and query workers, a metadata 
layer was implemented, enabling customers to query data 
as it was being ingested. 

Initial Architecture
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As the platform scaled to accommodate more data and 
customers, ingest and query workloads began to interfere 
with each other, and the architecture had to invest in 
reducing workload interference. 

A key strategy was the decoupling of ingest and query 
operations, utilizing a message queuing and publish-
subscribe construct to allow for asynchronous processing 
without load shedding. Kafka is a key architectural 
component we took a bet on, from its very early beta 
versions, to route data and process it along the way  
to synthesize additional information from telemetry  
(like entities) before it’s sent to the insert worker for 
persistence.

 

The system partitioned the data to optimize for  
two main constraints:
1.	 Colocate large rungs of similar data within the boundary 

of a tenant that is likely queried together to gain 
efficiencies from using columnar storage.

2.	 Reduce the failure domain for a given customer. A failure 
in a single broker or an insert worker or any component 
along the path of the ingest cannot impact all customers.

In the diagram below, you see the ingest path receiving 
data of all types from all customers by a component 
called Vortex, which applies authentication checks and 
partitions the data into high-level constructs called New 
Relic accounts. Then the data is processed and consumed 
through Kafka before it gets persisted in object stores.

Kafka for ingest processing, partitioning, and routing

Routers

S3 Bucket

Metadata

L O C A T I O N S

Insert Workers Query Workers

QueriesData Vortex
CQ - Partition

1 2 3 4 5

Once data reaches the insert worker, it needs to be stored 
in a format that is efficient for fast analytical queries. Very 
early on, we adopted a custom columnar format, known 
as the “archive file format,” as the columnar approach 
enables efficient data storage and retrieval. Since the data 

is organized by columns rather than rows, it optimizes 
analytical queries by minimizing the amount of data read 
from storage. This approach can lead to performance 
improvements of up to 200 times for certain analytical 
workloads.

Columnar storage and archive file format

https://github.com/newrelic/entity-definitions
https://dl.acm.org/doi/10.1145/1376616.1376712
https://dl.acm.org/doi/10.1145/1376616.1376712
https://dl.acm.org/doi/10.1145/1376616.1376712
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The diagram below shows the details of our custom columnar format, including how the data is organized and what  
additional metadata is created to efficiently query the data within the file.
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To meet the growing demands of data analytics and 
storage, we created a specialized file format called archive 
file format. This format is tailored for efficiency, flexibility, 
and performance in analytical workloads. Below are its key 
features and advantages.

Key features
	→ Optimized for analytical workloads: The archive file 

format is specifically engineered to handle complex 
analytical tasks. It supports high-performance queries 
and large-scale data processing, making it ideal for 
environments that require rapid insights from vast 
datasets.

	→ Efficient compression and encoding: Advanced 
compression techniques like LZ4, Zstd are employed 
to significantly reduce file sizes without sacrificing data 
quality. This efficiency not only saves storage space but 
also improves data transfer speeds.

	→ Diverse encoding techniques: To enhance data efficiency, 
the archive file format utilizes a variety of encoding 
methods:

	→ Dictionary encoding: Reduces redundancy by 
replacing repeated values with shorter codes.

	→ 	Delta encoding: Stores differences between  
sequential values, which is particularly effective for 
time series data.

	→ Run-length encoding: Compresses sequences of 
repeated values, optimizing storage for datasets with 
many duplicates.

	→ Schema-less support: A standout feature of the archive 
file format is its schema-less design. Unlike rigid schema-
driven systems or less-structured schema-on-read 
approaches, the schema-less implementation enables 
the efficient storage and querying of diverse data types 
without requiring a predefined structure. 
 
The schema-less design also allows for the rapid 
onboarding of new telemetry sources and the seamless 
handling of evolving data formats, both of which 
are common in dynamic enterprise environments. 
By minimizing the operational burden of schema 
management while maintaining high performance,  
this design allows businesses to respond faster to 
changing data requirements without sacrificing  
efficiency or scalability. 

	→ Efficient data retrieval: The archive file format is 
designed to facilitate rapid data access. By leveraging 
the columnar storage approach, it organizes data 
intelligently to minimize the time required for queries and 
enhance overall performance. This targeted data retrieval 
strategy ensures that the format maintains the significant 
performance improvements discussed earlier, making it 
highly effective for analytical workloads.

	→ Predicate pushdown: Predicate pushdown is a crucial 
feature for optimizing query performance. It enables the 
query engine to filter out unnecessary data at the storage 
level. By pushing down filters and limits, only relevant 
data is read from storage, significantly reducing input/
output (I/O) operations and speeding up query execution. 
While this approach is now common across many 
relational database management systems (RDBMS), its 
implementation in the archive file format was designed to 
meet the specific challenges of observability workloads, 
including handling high data ingestion rates and real-
time analytical queries on massive datasets. This ensures 
efficiency and performance in scenarios that demand 
low-latency responses.

	→ Metadata storage: In addition to its robust features, the 
archive file format includes comprehensive metadata 
storage. This metadata provides essential information 
about each file’s structure and characteristics, including:

	→ Column types: Details on the data types of each 
column, enabling efficient processing and type 
validation.

	→ Compression settings: Information about how each 
column is compressed, which aids in decompression 
during data retrieval. For instance, high-redundancy 
columns may use dictionary encoding, while time-
series data might leverage delta encoding for 
maximum compression efficiency.

	→ Summary statistics: Basic statistics for each column 
(such as min, max, average) that help the query engine 
quickly assess which files contain relevant data.

This rich metadata enables the query engine to optimize 
access by quickly identifying pertinent information within 
each file. As a result, query responses are faster and the 
analysis of dataset is more efficient. 
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Observability use cases often bias quite heavily to query 
the most recent data, what we call as “live edge of the data.” 
This requires the data to be available for querying even as 
it’s being stored in a columnar format.

Insert workers read the data from partitioned Kafka streams 
and convert it into archive files in batches. Before an archive 
file is flushed to our cloud object store, the data is written in 
row format in a block store with much faster I/O.

The challenge with live edge data lies in the fact that it’s 
still in the process of being persisted. Typically, the system 
waits to fill an archive file size of 26 MB before flushing 
it, as smaller files would lead to excessive fragmentation 
and degraded file read efficiency. During this time, the 
data resides with a single insert worker. However, the 
hardware of a single insert worker cannot scale to handle 
the disproportionate query load that live edge data often 
attracts.

This poses an interesting challenge in horizontally scaling 
the query load across multiple workers when the queries 
are accessing the live edge. To address this, an efficient 
data  transport method is required. One that can transfer 
data from the insert worker disks to the network, using a 
memory-efficient technique like sendfile. Additionally, it 
should support HTTP range queries.

Query workers check the disk for the file before processing 
the query for that particular file. If the file isn’t found on disk, 
the query worker will download the finished archive file from 
S3 (or the configured backup store) and then proceed to 
process the query.

For open archive files, the file only exists on a single disk, 
attached to the insert worker. If the file isn’t present on disk, 
a full download request will be sent to the owning insert 
worker to retrieve the full bytes written for the archive 
file, similar to the behavior for closed files. If the archive 
file is already on disk, additional bytes might have been 
appended to it, so an HTTP range query can retrieve any 
remaining bytes, which are then appended to the file. After 
the bytes have been appended, the query can proceed.

This is an important trade-off, sacrificing query response 
times for horizontal scalability. This has increased the 
median latency from 50 ms to 60 ms, highlighting the 
importance of fast live edge queries in observability 
workloads and the need for horizontal scaling in that layer.

Handling the live edge of the data

Metadata
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Query WorkersInsert Workers

S3 Bucket

BlockStore

Open
Archive File

BlockStore

Open
Archive File

Open
Archive Proxy

Open
Archive Proxy

https://man7.org/linux/man-pages/man2/sendfile.2.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
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The core principle of the query processing architecture for 
real-time analytics is to minimize the amount of data that 
needs to be examined to fulfill a query. Traditional relational 
database models often rely on index scans, which require 
searching through large portions of an index. In contrast, 
this architecture achieves efficiency through strategic query 
routing.

Query routing aggregates data from insert workers 
regarding the partitions and event types being ingested. 
It also gathers information about any data movement 
conducted by background processors or any metadata 
changes made for operational purposes. This collected 
information is then converted into queryable Bloom filters, 
which serve as an efficient means of representing the 
presence or absence of specific data elements.

These Bloom filters are instrumental for the query gateway, 
as they enable precise routing of queries to the appropriate 
partitions. This architectural choice enhances performance 
by reducing unnecessary data checks and optimizes 
resource utilization across the system.

Query processing
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Insert
Workers
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Query Routing
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High-level
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The process of executing a query begins with parsing and 
compiling a query execution plan. The language used is 
New Relic Query Language (NRQL), which is inspired by 
SQL but has been enhanced with additional function 
 such as TIMESERIES and HISTOGRAM to provide more 
analytical capabilities.

The parsing and compilation of queries involve several 
critical steps. Initially, abstract syntax trees (ASTs) are 
constructed, followed by the application of various 
compile-time transformations and optimizations. During 
this phase, a few unresolved nodes may remain, which 
will be addressed at query execution time. Overall, this 
method produces a fine-grained logical execution plan 
characterized by minimal unresolved nodes, thereby 
ensuring efficient execution.

One of the key architectural advantages of this approach 
is the ability to generate a highly optimized execution plan 
that can adapt to different query requirements. Encoding 
the plan into Thrift facilitates seamless communication with 
query workers, enabling them to execute tasks efficiently 
across distributed systems.

Query gateway

Query Compiler

NRQL String Compiled
Query Thrift

Query Plan Executor

Query Plan
Deserializer

Query Worker
Query
Gateway

Query
Plan

https://docs.newrelic.com/docs/nrql/nrql-syntax-clauses-functions/#sel-timeseries
https://docs.newrelic.com/docs/nrql/nrql-syntax-clauses-functions/#func-histogram
https://thrift.apache.org/


New Relic Platform Advantages 12 of 18

The metadata layer is a critical component of modern 
data architectures. It serves as a unifying force, ensuring 
seamless communication and coordination among diverse 
data components. By providing a centralized repository 
of consistent and reliable information about the data’s 
location, state, and characteristics, this layer fosters a 
cohesive data ecosystem.

Architecturally, the metadata layer plays several pivotal 
roles. It acts as a strategic layer of abstraction, decoupling 
the compute and storage layers and promoting flexibility 
and scalability. This abstraction enables data to be 
accessed and processed independently of its physical 
location, significantly enhancing data management and 
governance. Furthermore, the metadata layer offers 
invaluable insights into data assets. It provides precise 
location information for archive files, indexes, and essential 

statistics, empowering data analysts and engineers to 
efficiently locate and utilize data. For customers, it offers 
transparency into the data’s provenance, quality, and 
schema, and ensures that data is easily accessible for 
analytics and decision-making. 

The metadata layer also facilitates interoperability with 
external data sources and query engines. By establishing 
standardized data definitions and formats, it enables 
seamless integration and data exchange across diverse 
systems and platforms. This not only empowers 
organizations to fully leverage their data but also positions 
the system to support future agentic data integrations with 
third-party platforms. As this capability matures, customers 
will be able to connect their NRDB telemetry with external 
systems more seamlessly, unlocking additional value 
through expanded data ecosystems.

Metadata layer

Query Workers

Query WorkersAt-rest Processing Insert Workers
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Query
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As NRDB scaled from ingesting a few thousand events 
per minute to 10 billion events per minute and serving 
queries on top of a few petabytes of data to exabytes of 
data per day, it encountered new scaling limits and failure 
domains within its hosted open-source components like 
Kafka, ZooKeeper, Redis, and MySQL.

We were consistently operating these systems at the 
edge of their scalability. This led to operational issues  
that were not only difficult to debug and recover from, 
but also prevented us from elastically scaling to meet 
business needs.

We started the cellularization to:
	→ Improve resilience and fault isolation: Enhance system 

resilience by creating isolated units (cells) that contain 
failures within specific boundaries. This means that if 
one cell experiences an issue—such as a deployment 
failure or data corruption—it doesn’t affect the other 
cells. This isolation significantly reduces the “blast 

radius” of failures, allowing the overall system to 
maintain availability and performance even when 
individual components fail.

	→ Bounded load and predictable performance:  
Cellular architecture allows for the division of 
workloads into discrete units (cells), each with defined 
resource limits. This design ensures that each cell 
can handle a specific load without affecting others, 
leading to predictable performance characteristics. 
As demand increases, new cells can be added to 
accommodate additional load, ensuring that the 
overall system remains performant and responsive 
under varying conditions. This bounded load approach 
helps maintain consistent performance metrics across 
the system, making it easier to forecast capacity needs 
and operational behavior as usage scales up.

 
With those goals, here’s how the various components  
are organized into cells.
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In a high-level systems diagram, you would see five such cell types to illustrate the concept. Each of these distinct cell 
types is designed to optimize specific functionalities:

1.  Ingest cells:

	→ 	Real-time data ingestion: These cells are responsible for rapidly ingesting data and processing it in real time. 
The goal is to maintain a “time to glass” of less than 1 second, ensuring that the time from data ingestion to 
visualization remains below this threshold.

	→ Stream processing: They perform stream processing operations, such as synthesizing and updating entities 
and relationships from telemetry data.

	→ Shared state: By sharing state, these cells can efficiently coordinate and optimize data processing.

2.  Query cells:

	→ Low-latency query processing: These cells are optimized for efficient query execution, aiming for low query 
latency.

	→ Query orchestration: They orchestrate the query processing pipeline, ensuring optimal performance.

3.  Storage cells:

	→ Durable data storage: These cells provide reliable and durable storage for various data types, including raw 
data, metadata, and indexes.

	→ Performance optimization: They offer different storage classes with specific performance characteristics (for 
example, I/O speed, replication) to meet diverse data storage needs.

4.  Storage compute cells:

	→ Post-ingest processing: These cells handle various post-ingestion tasks, such as data compaction, batch 
processing, retention enforcement, and index curation.

	→ Data transformation and enrichment: These cells can also be used for data transformation and enrichment.

5.  General purpose cells:

	→ Control plane: These cells act as the control plane for the system, handling requests from customers for 
querying data and performing administrative tasks.

	→ Gateway services: They provide gateway services to expose the system’s capabilities to external users.
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Data and state transfer 
Data and state transfer between cells is orchestrated 
through enclaves. Enclaves are specialized components 
designed to manage communication and data exchange 
between different cell types. They implement messaging 
constructs, such as Kafka to facilitate asynchronous 
communication and data sharing mechanisms, like ACID-
compliant data storage, to ensure data consistency and 
reliability. By leveraging enclaves, the system ensures 
reliable and efficient data transfer between cells, 
maintaining the integrity and performance of the overall 
architecture.

Limits and protection
In any database system, especially one designed for multi-
tenancy like NRDB, implementing limits and protection 
mechanisms is crucial to ensure that no single tenant can 
monopolize resources or degrade performance for others.

	→ Resource quotas: NRDB enforces quotas on resource 
usage per tenant to prevent overconsumption of CPU, 
memory, or I/O bandwidth. This ensures fair resource 
allocation across tenants.

	→ Rate limiting: NRDB employs industry-standard rate 
limiting strategies to protect against sudden spikes in 
traffic that could overwhelm the system. These strategies 
control the number of requests a tenant can make within 
a specified timeframe. While these rate limiting measures 
align with industry standards, NRDB offers flexibility by 
allowing customers to tune these limits according to their 
specific needs. This customization capability ensures 
that customers can optimize performance and resource 
allocation based on their unique usage patterns.

	→ Data isolation: Each tenant’s data is logically  
separated to prevent unauthorized access or 
interference. This isolation is enforced at both the 
application and storage levels.

Auto scaling within and across cells
NRDB’s architecture supports auto scaling capabilities 
both within individual cells (units of deployment) and across 
multiple cells in a distributed environment.

	→ Dynamic resource allocation: The system continuously 
monitors resource usage and automatically allocates 
additional resources when demand increases. This 
ensures optimal performance during peak loads without 
manual intervention.

	→ Horizontal scaling: As demand grows, NRDB can 
scale out by adding more cells to distribute the load 
evenly across the infrastructure. This horizontal scaling 
capability allows for seamless expansion as data volumes 
increase.

	→ Cell lifecycle management: Each cell operates 
independently but can communicate with others for load 
balancing purposes. This design minimizes downtime 
during scaling operations while maintaining high 
availability.

Managing stateful data while 
keeping cell lifecycle lightweight
Dealing with stateful data in a lightweight manner is a 
significant challenge in distributed systems like NRDB. The 
architecture addresses this by employing several strategies:

	→ Stateless processing: Where possible, NRDB uses 
stateless processing for queries to simplify scaling and 
reduce resource overhead. Stateless components do not 
retain information between requests, allowing them to be 
easily replicated across multiple nodes.

	→ Lightweight state management: For operations that 
require stateful processing, such as session management 
or transaction tracking, NRDB employs lightweight state 
management techniques such as caching that minimize 
resource consumption while ensuring necessary state 
information is available when needed.

	→ Efficient data serialization: Data transmitted between 
layers is serialized efficiently to minimize latency and 
bandwidth usage. This process converts complex data 
structures into compact, optimized formats, making them 
suitable for fast network transmission. By reducing the 
size of transmitted data and streamlining communication 
between system components, serialization ensures that 
even stateful interactions maintain low latency and  
high performance. 
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Querying mutable and external data alongside telemetry 
data presents unique challenges and opportunities in 
modern database systems. Telemetry data is predominantly 
immutable, which allows database systems to optimize 
for cache efficiency. However, contemporary telemetry 
applications necessitate the capability to query extensive 
volumes of telemetry data in conjunction with smaller sets of 
mutable data, such as personnel information, sales metrics, 
or other business intelligence data. To address this need, 
NRDB has evolved its query layer to facilitate such complex 
queries, enabling users to efficiently integrate and analyze 
both mutable and immutable datasets. This advancement 
enhances the ability to derive actionable insights from 
diverse sources of information, thereby supporting informed 
decision-making processes in various business contexts.

There are two broad areas that we dealt with: 
	→ Querying mutable data, which involves invalidating the 

caches and incurring the cost of retrieving the freshest 
copy of the data.

	→ Querying a separate database engine to get that data.

Both of these cases required the query planner to be aware 
of the type of data being queried.

Every piece of data in the platform is organized into a type 
of event, referred to as “eventTypes.” From a query planner 
perspective, there are three categories: 

	→ An eventType that is internal to NRDB and is immutable.
	→ An eventType that is internal to NRDB and is mutable.
	→ An eventType that is external to NRDB. 

The high-level architecture is as follows:

Integrating Data in Workloads
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This architecture is designed as a connector-based 
framework, where each connector operates a dedicated 
fleet of workers (compute resources) responsible for 
executing specific segments of queries with optimal 
efficiency. Each connector is equipped with the necessary 
logic to enhance performance, including implementing 
techniques like predicate pushdown. This ultimately leads 
to faster query execution times.

In addition to executing queries efficiently, each connector 
plays a crucial role in task orchestration tailored to its 
specific data source. This orchestration involves managing 
various tasks such as distributing workloads among the 
compute resources, handling data retrieval processes, and 
ensuring that queries are executed in a manner that aligns 
with the capabilities and constraints of the underlying data 
source.

Furthermore, the connectors interact seamlessly with both 
the coordinator and the metadata API. The coordinator 
oversees the overall query execution process, ensuring that 
all components work together harmoniously. Meanwhile, 
the metadata API facilitates access to  essential information 
about data structures, schemas, and other relevant details 
necessary for executing queries accurately.

By supporting the querying of external data in the context 
of telemetry data, NRDB is leading a positive disruption 
in the observability space. This capability allows external 
metadata to provide vital context about the structure and 
organization of data, enabling connectors to optimize query 
execution without duplicating or reshaping the data. This 
approach aligns with industry priorities of interoperability 
and the ability to work with data in place, an area now 
actively being explored by the industry. 

While this approach introduces variability in query 
performance, increases complexity, and does not ensure 
strong data consistency, it provides significant flexibility 
by allowing immediate querying of data. Previously, users 
might have spent days building entire pipelines to make 
such data queryable. By leveraging the connectors’ ability 
to directly interact with external data sources, NRDB 
significantly reduces the time required to access critical 
information. Although this flexibility may result in slightly 
higher latencies, it represents a substantial improvement 
over traditional, time-consuming processes. This trade-off 
is especially valuable when rapid access to information is 
crucial such as during incident response.

The query platform also incorporates a feature for 
query progress checkpointing, where applicable, which 
significantly enhances the user experience and analytical 
capabilities. This functionality enables users to receive 
incremental results throughout the execution of their 
queries, rather than waiting for the entire dataset to be 
processed before obtaining any output. By facilitating 
incremental result delivery, users can begin analyzing 
data as it becomes available, allowing for more dynamic 
and responsive decision-making. This is particularly 
advantageous when dealing with extremely large volumes 
of data, as it mitigates the challenges associated with 
processing such datasets in their entirety. Moreover, this 
capability supports real-time analytical queries by allowing 
users to interact with data in a more fluid manner. As users 
receive partial results, they can adjust their queries or 
refine their analyses based on the insights gained from the 
initial outputs. This iterative approach not only improves 
efficiency but also enhances the overall effectiveness of 
data exploration and analysis in real-time contexts.

Query WorkerCo-ordinator

Query Client

S3 Bucket

Query
Gateway
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The ability to process and analyze large-scale telemetry 
data in real time is critical for modern enterprises operating 
in cloud-native and distributed environments. However, 
building a database that balances scalability, fault tolerance, 
and cost efficiency is not without its challenges. Addressing 
issues such as efficient integration of diverse data types, 
predictable performance under heavy workloads, and 
resource optimization requires thoughtful architectural 
choices. 

This white paper highlights how NRDB’s architecture is 
purpose-built to tackle these challenges head-on. Its 
scalable and resilient design provides a robust foundation for 
meeting the demands of modern observability workloads, 
enabling organizations to achieve operational efficiency with 
real time analytics. NRDB’s architecture is a testament to our 
commitment at New Relic to providing world-class solutions 
that help organizations achieve their business objectives 
with agility and confidence. 

New Relic remains committed to further enhancing 
NRDB’s capabilities through continuous innovation and by 
addressing evolving needs of its customers. As technology 
advances, NRDB will continue to deliver cutting-edge 
solutions, ensuring that customers can unlock the full 
potential of their data.

Through the platform, we use one SQL-like query language 
for users to interact with the data.

This spans to all data transformation activities. Users can 
create data (or entity) synthesis rules, data deletion (or 
drop rules) or obfuscation rules, all of which execute on 
the customer environment or the New Relic Intelligent 
Observability Platform.

After the data is ingested, users can configure alerts  
or define service levels, which the system evaluates at 
pre-defined cadences. Finally users can query the data 
directly using the query builder, through dashboards or via 
APIs. During all these activities, the same language is used 
to reduce the cognitive burden for users. While the amount 
of grammar supported might vary slightly, it provides an 
intuitive way to interact with the data.

Unified Query Language

Conclusion
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https://docs.newrelic.com/docs/new-relic-solutions/new-relic-one/core-concepts/what-entity-new-relic/#entity-synthesis
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https://docs.newrelic.com/docs/tutorial-create-alerts/create-new-relic-alerts/
https://docs.newrelic.com/docs/service-level-management/create-slm/
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