
 Technical White Paper / February 2025

AUTHOR:

Kranthi Erusu, Group Vice President,
Engineering, New Relic

Architecting
for the Future:
Unveiling the Future of Data Ingestion, Routing,
and Storage Architecture for Observability.

New Relic Platform Advantages 2 of 18

The complexity of modern enterprise systems has
made observability essential for effective operations. As
organizations adopt cloud-native, hybrid, and distributed
infrastructures, the ability to process and analyze telemetry
data in real time is critical for maintaining system reliability,
performance, and user satisfaction. These evolving demands
present significant challenges, including the need to ingest,
store, and query diverse data types at scale, while optimizing
cost and ensuring operational efficiency.

To address these challenges, the New Relic database
(NRDB) was developed as a cloud-native, multi-tenant
database optimized for observability workloads. NRDB
combines high-performance querying, fault isolation,
and cost-efficient scalability to meet the requirements of
dynamic business environments. Its architecture enables
seamless analysis of diverse data types, including immutable
telemetry data, mutable business data, and external sources,
all within a unified framework. These capabilities allow
NRDB to deliver the reliability and performance needed for
real-time analytics, supporting the growing requirements of
modern data ecosystems.

This white paper traces the evolution of NRDB, emphasizing
how its design has evolved to meet the demands of real-time
analytics at scale. Through advancements in multi-tenant
architecture and efficient querying, NRDB exemplifies how
modern databases are engineered to address the challenges
of today’s dynamic data environments.

Introduction

New Relic Platform Advantages 3 of 18

Evolution from 2014 to Scalability

In 2014, the NRDB architecture embarked on a path inspired by the
Dremel paper, aiming to create a massively distributed database system
for analytics over traditional architectures like simple file storage. At that
time, no analytical engines could produce query results in sub-seconds.
The state of the ecosystem then consisted of distributed query engines
that generated results in minutes when submitted to them as batch jobs.
Observability (o11y) use cases, however, required more “real-time”
query results.

To meet these requirements, the NRDB architecture was designed with
three core goals: ease of use, blazing-fast performance, and a unified
platform for diverse data types.

Ease of use
The NRDB architecture was designed with user-friendliness in mind. It
eliminated the need for predefined schemas, index requirements, and
tables, simplifying the data analytics process and allowing users to focus
on deriving insights rather than managing database structures.

Speed
Speed was a critical factor, with the architecture aiming for sub-second
“time to glass” and a median query performance of 50 ms. The goal was to
enable users to analyze data through an expressive SQL-inspired language
that allowed for quick and efficient data retrieval without adding a barrier to
learn a new query language.

All-in-one solution
NRDB aimed to be a one-stop solution for querying various data types,
including metrics, events, logs, and traces, all from a single location. This
holistic approach enabled comprehensive analysis and monitoring across
different data streams.

New Relic Database
Architecture

https://research.google.com/pubs/archive/36632.pdf

New Relic Platform Advantages 4 of 18

The initial setup involved Java virtual machines (JVMs) on
a large array of bare metal servers, leveraging solid-state
drives (SSDs) crammed into the chassis, with a 60-70%
of the cost attributed to storage. The storage costs were
ballooned by the practice of storing multiple copies in
Amazon Simple Storage Service (S3), which was used for
disaster recovery rather than operational quality of service.

The high-level architecture was quite simple, where we
had a fleet of workers called insert workers to persist the
data into S3 and another fleet of workers called query
workers that would serve queries from storage. To ensure
consistency between insert and query workers, a metadata
layer was implemented, enabling customers to query data
as it was being ingested.

Initial Architecture

Insert
Workers

Metadata

L O C A T I O N S

Routers

Query Workers

S3 Bucket

Queries

SSD SSD

Data

Live
Query

Workers

New Relic Platform Advantages 5 of 18

As the platform scaled to accommodate more data and
customers, ingest and query workloads began to interfere
with each other, and the architecture had to invest in
reducing workload interference.

A key strategy was the decoupling of ingest and query
operations, utilizing a message queuing and publish-
subscribe construct to allow for asynchronous processing
without load shedding. Kafka is a key architectural
component we took a bet on, from its very early beta
versions, to route data and process it along the way
to synthesize additional information from telemetry
(like entities) before it’s sent to the insert worker for
persistence.

The system partitioned the data to optimize for
two main constraints:
1.	 Colocate large rungs of similar data within the boundary

of a tenant that is likely queried together to gain
efficiencies from using columnar storage.

2.	 Reduce the failure domain for a given customer. A failure
in a single broker or an insert worker or any component
along the path of the ingest cannot impact all customers.

In the diagram below, you see the ingest path receiving
data of all types from all customers by a component
called Vortex, which applies authentication checks and
partitions the data into high-level constructs called New
Relic accounts. Then the data is processed and consumed
through Kafka before it gets persisted in object stores.

Kafka for ingest processing, partitioning, and routing

Routers

S3 Bucket

Metadata

L O C A T I O N S

Insert Workers Query Workers

QueriesData Vortex
CQ - Partition

1 2 3 4 5

Once data reaches the insert worker, it needs to be stored
in a format that is efficient for fast analytical queries. Very
early on, we adopted a custom columnar format, known
as the “archive file format,” as the columnar approach
enables efficient data storage and retrieval. Since the data

is organized by columns rather than rows, it optimizes
analytical queries by minimizing the amount of data read
from storage. This approach can lead to performance
improvements of up to 200 times for certain analytical
workloads.

Columnar storage and archive file format

https://github.com/newrelic/entity-definitions
https://dl.acm.org/doi/10.1145/1376616.1376712
https://dl.acm.org/doi/10.1145/1376616.1376712
https://dl.acm.org/doi/10.1145/1376616.1376712

New Relic Platform Advantages 6 of 18

v1002 Columnar File Format

Columnar
Cookie (Int)

Version
(Int)

MD5 Digest
(16 Bytes)

Encoded Key Matter
(Variable)

Key Matter
Length (Int)

Version
(Int)

Columnar
Cookies (Int)

Stripe (i.e., Chunk) — Up to 16,384 Events

File Index (Variable)

...

Stripe (i.e., Chunk)

Column Data
(Variable)

Column Data
(Variable)

Column Data
(Variable)

Column Data
(Variable)

Column Index (Variable)

...

Column Data

String Table – Optional
(Variable)

Column Value
Run Length Encoded

(Length Based on Attribute Type)

...

Column Index

String Table – Optional
(Variable)

Column Index Entry
(Variable)

...

String Table

String Digest
(Int)

String Table

Column
Name

(String)

Attribute
Type

(Byte)

String Table
Present

(Boolean)

Column
Relative

Offset (Int)

Column
Encoded

Length (Int)

Column
Header

Length (Int)

Column
Header

Flags (Int)

Column
Min Value
(Variable)

Column
Min Value
(Variable)

Embedded
Metric Types

(Bitmap)

String Digest
(Variable)

Unique String Count
(Int)

...

The diagram below shows the details of our custom columnar format, including how the data is organized and what
additional metadata is created to efficiently query the data within the file.

New Relic Platform Advantages 7 of 18

v1002 Columnar File Format

Columnar
Cookie (Int)

Version
(Int)

MD5 Digest
(16 Bytes)

Encoded Key Matter
(Variable)

Key Matter
Length (Int)

Version
(Int)

Columnar
Cookies (Int)

Stripe (i.e., Chunk)

File Index (Variable)

...

File Index

Event Type
(String)

Number of Stripes
(Int)

Total File Event
Count (Int)

Total File Omitted
Count (Int)

Number of Columns
in File (Int)

Stripe Index Entry (Variable)

...

File Column Index Entry (Variable)

...

File Index Length (Int)

Stripe Index Entry

Offset of Stripe
Data (Int)

Length of Stripe’s
Column Index (Int)

Length of Stripe’s
Column Data Section (Int)

Stripe’s Event Count
(Int)

Stripe’s Omitted Count
(Int)

Column Min Value
(Variable)

Column Max Value
(Variable)

Embedded Metric
Types (Bitmap)

File Column Index Entry

Column Name
(String)

Attribute Type
(Byte)

Column Header
Length (Int)

Column Header
Flags (Byte)

New Relic Platform Advantages 8 of 18

To meet the growing demands of data analytics and
storage, we created a specialized file format called archive
file format. This format is tailored for efficiency, flexibility,
and performance in analytical workloads. Below are its key
features and advantages.

Key features
	→ Optimized for analytical workloads: The archive file

format is specifically engineered to handle complex
analytical tasks. It supports high-performance queries
and large-scale data processing, making it ideal for
environments that require rapid insights from vast
datasets.

	→ Efficient compression and encoding: Advanced
compression techniques like LZ4, Zstd are employed
to significantly reduce file sizes without sacrificing data
quality. This efficiency not only saves storage space but
also improves data transfer speeds.

	→ Diverse encoding techniques: To enhance data efficiency,
the archive file format utilizes a variety of encoding
methods:

	→ Dictionary encoding: Reduces redundancy by
replacing repeated values with shorter codes.

	→ 	Delta encoding: Stores differences between
sequential values, which is particularly effective for
time series data.

	→ Run-length encoding: Compresses sequences of
repeated values, optimizing storage for datasets with
many duplicates.

	→ Schema-less support: A standout feature of the archive
file format is its schema-less design. Unlike rigid schema-
driven systems or less-structured schema-on-read
approaches, the schema-less implementation enables
the efficient storage and querying of diverse data types
without requiring a predefined structure.

The schema-less design also allows for the rapid
onboarding of new telemetry sources and the seamless
handling of evolving data formats, both of which
are common in dynamic enterprise environments.
By minimizing the operational burden of schema
management while maintaining high performance,
this design allows businesses to respond faster to
changing data requirements without sacrificing
efficiency or scalability.

	→ Efficient data retrieval: The archive file format is
designed to facilitate rapid data access. By leveraging
the columnar storage approach, it organizes data
intelligently to minimize the time required for queries and
enhance overall performance. This targeted data retrieval
strategy ensures that the format maintains the significant
performance improvements discussed earlier, making it
highly effective for analytical workloads.

	→ Predicate pushdown: Predicate pushdown is a crucial
feature for optimizing query performance. It enables the
query engine to filter out unnecessary data at the storage
level. By pushing down filters and limits, only relevant
data is read from storage, significantly reducing input/
output (I/O) operations and speeding up query execution.
While this approach is now common across many
relational database management systems (RDBMS), its
implementation in the archive file format was designed to
meet the specific challenges of observability workloads,
including handling high data ingestion rates and real-
time analytical queries on massive datasets. This ensures
efficiency and performance in scenarios that demand
low-latency responses.

	→ Metadata storage: In addition to its robust features, the
archive file format includes comprehensive metadata
storage. This metadata provides essential information
about each file’s structure and characteristics, including:

	→ Column types: Details on the data types of each
column, enabling efficient processing and type
validation.

	→ Compression settings: Information about how each
column is compressed, which aids in decompression
during data retrieval. For instance, high-redundancy
columns may use dictionary encoding, while time-
series data might leverage delta encoding for
maximum compression efficiency.

	→ Summary statistics: Basic statistics for each column
(such as min, max, average) that help the query engine
quickly assess which files contain relevant data.

This rich metadata enables the query engine to optimize
access by quickly identifying pertinent information within
each file. As a result, query responses are faster and the
analysis of dataset is more efficient.

New Relic Platform Advantages 9 of 18

Observability use cases often bias quite heavily to query
the most recent data, what we call as “live edge of the data.”
This requires the data to be available for querying even as
it’s being stored in a columnar format.

Insert workers read the data from partitioned Kafka streams
and convert it into archive files in batches. Before an archive
file is flushed to our cloud object store, the data is written in
row format in a block store with much faster I/O.

The challenge with live edge data lies in the fact that it’s
still in the process of being persisted. Typically, the system
waits to fill an archive file size of 26 MB before flushing
it, as smaller files would lead to excessive fragmentation
and degraded file read efficiency. During this time, the
data resides with a single insert worker. However, the
hardware of a single insert worker cannot scale to handle
the disproportionate query load that live edge data often
attracts.

This poses an interesting challenge in horizontally scaling
the query load across multiple workers when the queries
are accessing the live edge. To address this, an efficient
data transport method is required. One that can transfer
data from the insert worker disks to the network, using a
memory-efficient technique like sendfile. Additionally, it
should support HTTP range queries.

Query workers check the disk for the file before processing
the query for that particular file. If the file isn’t found on disk,
the query worker will download the finished archive file from
S3 (or the configured backup store) and then proceed to
process the query.

For open archive files, the file only exists on a single disk,
attached to the insert worker. If the file isn’t present on disk,
a full download request will be sent to the owning insert
worker to retrieve the full bytes written for the archive
file, similar to the behavior for closed files. If the archive
file is already on disk, additional bytes might have been
appended to it, so an HTTP range query can retrieve any
remaining bytes, which are then appended to the file. After
the bytes have been appended, the query can proceed.

This is an important trade-off, sacrificing query response
times for horizontal scalability. This has increased the
median latency from 50 ms to 60 ms, highlighting the
importance of fast live edge queries in observability
workloads and the need for horizontal scaling in that layer.

Handling the live edge of the data

Metadata

L O C A T I O N S

Query WorkersInsert Workers

S3 Bucket

BlockStore

Open
Archive File

BlockStore

Open
Archive File

Open
Archive Proxy

Open
Archive Proxy

https://man7.org/linux/man-pages/man2/sendfile.2.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests

New Relic Platform Advantages 10 of 18

The core principle of the query processing architecture for
real-time analytics is to minimize the amount of data that
needs to be examined to fulfill a query. Traditional relational
database models often rely on index scans, which require
searching through large portions of an index. In contrast,
this architecture achieves efficiency through strategic query
routing.

Query routing aggregates data from insert workers
regarding the partitions and event types being ingested.
It also gathers information about any data movement
conducted by background processors or any metadata
changes made for operational purposes. This collected
information is then converted into queryable Bloom filters,
which serve as an efficient means of representing the
presence or absence of specific data elements.

These Bloom filters are instrumental for the query gateway,
as they enable precise routing of queries to the appropriate
partitions. This architectural choice enhances performance
by reducing unnecessary data checks and optimizes
resource utilization across the system.

Query processing

Co-ordinator

Queries

Metadata
Systems

Insert
Workers

At Rest
Processing

Query Routing
Bloom Filters

High-level
Participation
Blooms

Query
Gateway

New Relic Platform Advantages 11 of 18

The process of executing a query begins with parsing and
compiling a query execution plan. The language used is
New Relic Query Language (NRQL), which is inspired by
SQL but has been enhanced with additional function
 such as TIMESERIES and HISTOGRAM to provide more
analytical capabilities.

The parsing and compilation of queries involve several
critical steps. Initially, abstract syntax trees (ASTs) are
constructed, followed by the application of various
compile-time transformations and optimizations. During
this phase, a few unresolved nodes may remain, which
will be addressed at query execution time. Overall, this
method produces a fine-grained logical execution plan
characterized by minimal unresolved nodes, thereby
ensuring efficient execution.

One of the key architectural advantages of this approach
is the ability to generate a highly optimized execution plan
that can adapt to different query requirements. Encoding
the plan into Thrift facilitates seamless communication with
query workers, enabling them to execute tasks efficiently
across distributed systems.

Query gateway

Query Compiler

NRQL String Compiled
Query Thrift

Query Plan Executor

Query Plan
Deserializer

Query Worker
Query
Gateway

Query
Plan

https://docs.newrelic.com/docs/nrql/nrql-syntax-clauses-functions/#sel-timeseries
https://docs.newrelic.com/docs/nrql/nrql-syntax-clauses-functions/#func-histogram
https://thrift.apache.org/

New Relic Platform Advantages 12 of 18

The metadata layer is a critical component of modern
data architectures. It serves as a unifying force, ensuring
seamless communication and coordination among diverse
data components. By providing a centralized repository
of consistent and reliable information about the data’s
location, state, and characteristics, this layer fosters a
cohesive data ecosystem.

Architecturally, the metadata layer plays several pivotal
roles. It acts as a strategic layer of abstraction, decoupling
the compute and storage layers and promoting flexibility
and scalability. This abstraction enables data to be
accessed and processed independently of its physical
location, significantly enhancing data management and
governance. Furthermore, the metadata layer offers
invaluable insights into data assets. It provides precise
location information for archive files, indexes, and essential

statistics, empowering data analysts and engineers to
efficiently locate and utilize data. For customers, it offers
transparency into the data’s provenance, quality, and
schema, and ensures that data is easily accessible for
analytics and decision-making.

The metadata layer also facilitates interoperability with
external data sources and query engines. By establishing
standardized data definitions and formats, it enables
seamless integration and data exchange across diverse
systems and platforms. This not only empowers
organizations to fully leverage their data but also positions
the system to support future agentic data integrations with
third-party platforms. As this capability matures, customers
will be able to connect their NRDB telemetry with external
systems more seamlessly, unlocking additional value
through expanded data ecosystems.

Metadata layer

Query Workers

Query WorkersAt-rest Processing Insert Workers

Metadata Layer

Event Type
Registration

Query
Gateway

New Relic Platform Advantages 13 of 18

As NRDB scaled from ingesting a few thousand events
per minute to 10 billion events per minute and serving
queries on top of a few petabytes of data to exabytes of
data per day, it encountered new scaling limits and failure
domains within its hosted open-source components like
Kafka, ZooKeeper, Redis, and MySQL.

We were consistently operating these systems at the
edge of their scalability. This led to operational issues
that were not only difficult to debug and recover from,
but also prevented us from elastically scaling to meet
business needs.

We started the cellularization to:
	→ Improve resilience and fault isolation: Enhance system

resilience by creating isolated units (cells) that contain
failures within specific boundaries. This means that if
one cell experiences an issue—such as a deployment
failure or data corruption—it doesn’t affect the other
cells. This isolation significantly reduces the “blast

radius” of failures, allowing the overall system to
maintain availability and performance even when
individual components fail.

	→ Bounded load and predictable performance:
Cellular architecture allows for the division of
workloads into discrete units (cells), each with defined
resource limits. This design ensures that each cell
can handle a specific load without affecting others,
leading to predictable performance characteristics.
As demand increases, new cells can be added to
accommodate additional load, ensuring that the
overall system remains performant and responsive
under varying conditions. This bounded load approach
helps maintain consistent performance metrics across
the system, making it easier to forecast capacity needs
and operational behavior as usage scales up.

With those goals, here’s how the various components
are organized into cells.

Cellular Architecture

Ingest Cells

Stream
Processors

Insert
Workers

Schedulers

Query Cells

Query
Routers

Query
Workers

Storage Compute

At-rest
Processors

Metadata
API Layer

General Purpose

Global Services Query Gateways

Storage Cells

Archive Files IndexesMetadata Stores

New Relic Platform Advantages 14 of 18

In a high-level systems diagram, you would see five such cell types to illustrate the concept. Each of these distinct cell
types is designed to optimize specific functionalities:

1. Ingest cells:

	→ 	Real-time data ingestion: These cells are responsible for rapidly ingesting data and processing it in real time.
The goal is to maintain a “time to glass” of less than 1 second, ensuring that the time from data ingestion to
visualization remains below this threshold.

	→ Stream processing: They perform stream processing operations, such as synthesizing and updating entities
and relationships from telemetry data.

	→ Shared state: By sharing state, these cells can efficiently coordinate and optimize data processing.

2. Query cells:

	→ Low-latency query processing: These cells are optimized for efficient query execution, aiming for low query
latency.

	→ Query orchestration: They orchestrate the query processing pipeline, ensuring optimal performance.

3. Storage cells:

	→ Durable data storage: These cells provide reliable and durable storage for various data types, including raw
data, metadata, and indexes.

	→ Performance optimization: They offer different storage classes with specific performance characteristics (for
example, I/O speed, replication) to meet diverse data storage needs.

4. Storage compute cells:

	→ Post-ingest processing: These cells handle various post-ingestion tasks, such as data compaction, batch
processing, retention enforcement, and index curation.

	→ Data transformation and enrichment: These cells can also be used for data transformation and enrichment.

5. General purpose cells:

	→ Control plane: These cells act as the control plane for the system, handling requests from customers for
querying data and performing administrative tasks.

	→ Gateway services: They provide gateway services to expose the system’s capabilities to external users.

New Relic Platform Advantages 15 of 18

Data and state transfer
Data and state transfer between cells is orchestrated
through enclaves. Enclaves are specialized components
designed to manage communication and data exchange
between different cell types. They implement messaging
constructs, such as Kafka to facilitate asynchronous
communication and data sharing mechanisms, like ACID-
compliant data storage, to ensure data consistency and
reliability. By leveraging enclaves, the system ensures
reliable and efficient data transfer between cells,
maintaining the integrity and performance of the overall
architecture.

Limits and protection
In any database system, especially one designed for multi-
tenancy like NRDB, implementing limits and protection
mechanisms is crucial to ensure that no single tenant can
monopolize resources or degrade performance for others.

	→ Resource quotas: NRDB enforces quotas on resource
usage per tenant to prevent overconsumption of CPU,
memory, or I/O bandwidth. This ensures fair resource
allocation across tenants.

	→ Rate limiting: NRDB employs industry-standard rate
limiting strategies to protect against sudden spikes in
traffic that could overwhelm the system. These strategies
control the number of requests a tenant can make within
a specified timeframe. While these rate limiting measures
align with industry standards, NRDB offers flexibility by
allowing customers to tune these limits according to their
specific needs. This customization capability ensures
that customers can optimize performance and resource
allocation based on their unique usage patterns.

	→ Data isolation: Each tenant’s data is logically
separated to prevent unauthorized access or
interference. This isolation is enforced at both the
application and storage levels.

Auto scaling within and across cells
NRDB’s architecture supports auto scaling capabilities
both within individual cells (units of deployment) and across
multiple cells in a distributed environment.

	→ Dynamic resource allocation: The system continuously
monitors resource usage and automatically allocates
additional resources when demand increases. This
ensures optimal performance during peak loads without
manual intervention.

	→ Horizontal scaling: As demand grows, NRDB can
scale out by adding more cells to distribute the load
evenly across the infrastructure. This horizontal scaling
capability allows for seamless expansion as data volumes
increase.

	→ Cell lifecycle management: Each cell operates
independently but can communicate with others for load
balancing purposes. This design minimizes downtime
during scaling operations while maintaining high
availability.

Managing stateful data while
keeping cell lifecycle lightweight
Dealing with stateful data in a lightweight manner is a
significant challenge in distributed systems like NRDB. The
architecture addresses this by employing several strategies:

	→ Stateless processing: Where possible, NRDB uses
stateless processing for queries to simplify scaling and
reduce resource overhead. Stateless components do not
retain information between requests, allowing them to be
easily replicated across multiple nodes.

	→ Lightweight state management: For operations that
require stateful processing, such as session management
or transaction tracking, NRDB employs lightweight state
management techniques such as caching that minimize
resource consumption while ensuring necessary state
information is available when needed.

	→ Efficient data serialization: Data transmitted between
layers is serialized efficiently to minimize latency and
bandwidth usage. This process converts complex data
structures into compact, optimized formats, making them
suitable for fast network transmission. By reducing the
size of transmitted data and streamlining communication
between system components, serialization ensures that
even stateful interactions maintain low latency and
high performance.

New Relic Platform Advantages 16 of 18

Querying mutable and external data alongside telemetry
data presents unique challenges and opportunities in
modern database systems. Telemetry data is predominantly
immutable, which allows database systems to optimize
for cache efficiency. However, contemporary telemetry
applications necessitate the capability to query extensive
volumes of telemetry data in conjunction with smaller sets of
mutable data, such as personnel information, sales metrics,
or other business intelligence data. To address this need,
NRDB has evolved its query layer to facilitate such complex
queries, enabling users to efficiently integrate and analyze
both mutable and immutable datasets. This advancement
enhances the ability to derive actionable insights from
diverse sources of information, thereby supporting informed
decision-making processes in various business contexts.

There are two broad areas that we dealt with:
	→ Querying mutable data, which involves invalidating the

caches and incurring the cost of retrieving the freshest
copy of the data.

	→ Querying a separate database engine to get that data.

Both of these cases required the query planner to be aware
of the type of data being queried.

Every piece of data in the platform is organized into a type
of event, referred to as “eventTypes.” From a query planner
perspective, there are three categories:

	→ An eventType that is internal to NRDB and is immutable.
	→ An eventType that is internal to NRDB and is mutable.
	→ An eventType that is external to NRDB.

The high-level architecture is as follows:

Integrating Data in Workloads

Query Worker

Query Worker

External
Query Worker

Co-ordinator

Metadata API
Query

Gateway

Event Type
Registration

NRDB

C*

DSQL

New Relic Platform Advantages 17 of 18

This architecture is designed as a connector-based
framework, where each connector operates a dedicated
fleet of workers (compute resources) responsible for
executing specific segments of queries with optimal
efficiency. Each connector is equipped with the necessary
logic to enhance performance, including implementing
techniques like predicate pushdown. This ultimately leads
to faster query execution times.

In addition to executing queries efficiently, each connector
plays a crucial role in task orchestration tailored to its
specific data source. This orchestration involves managing
various tasks such as distributing workloads among the
compute resources, handling data retrieval processes, and
ensuring that queries are executed in a manner that aligns
with the capabilities and constraints of the underlying data
source.

Furthermore, the connectors interact seamlessly with both
the coordinator and the metadata API. The coordinator
oversees the overall query execution process, ensuring that
all components work together harmoniously. Meanwhile,
the metadata API facilitates access to essential information
about data structures, schemas, and other relevant details
necessary for executing queries accurately.

By supporting the querying of external data in the context
of telemetry data, NRDB is leading a positive disruption
in the observability space. This capability allows external
metadata to provide vital context about the structure and
organization of data, enabling connectors to optimize query
execution without duplicating or reshaping the data. This
approach aligns with industry priorities of interoperability
and the ability to work with data in place, an area now
actively being explored by the industry.

While this approach introduces variability in query
performance, increases complexity, and does not ensure
strong data consistency, it provides significant flexibility
by allowing immediate querying of data. Previously, users
might have spent days building entire pipelines to make
such data queryable. By leveraging the connectors’ ability
to directly interact with external data sources, NRDB
significantly reduces the time required to access critical
information. Although this flexibility may result in slightly
higher latencies, it represents a substantial improvement
over traditional, time-consuming processes. This trade-off
is especially valuable when rapid access to information is
crucial such as during incident response.

The query platform also incorporates a feature for
query progress checkpointing, where applicable, which
significantly enhances the user experience and analytical
capabilities. This functionality enables users to receive
incremental results throughout the execution of their
queries, rather than waiting for the entire dataset to be
processed before obtaining any output. By facilitating
incremental result delivery, users can begin analyzing
data as it becomes available, allowing for more dynamic
and responsive decision-making. This is particularly
advantageous when dealing with extremely large volumes
of data, as it mitigates the challenges associated with
processing such datasets in their entirety. Moreover, this
capability supports real-time analytical queries by allowing
users to interact with data in a more fluid manner. As users
receive partial results, they can adjust their queries or
refine their analyses based on the insights gained from the
initial outputs. This iterative approach not only improves
efficiency but also enhances the overall effectiveness of
data exploration and analysis in real-time contexts.

Query WorkerCo-ordinator

Query Client

S3 Bucket

Query
Gateway

New Relic Platform Advantages 18 of 18

The ability to process and analyze large-scale telemetry
data in real time is critical for modern enterprises operating
in cloud-native and distributed environments. However,
building a database that balances scalability, fault tolerance,
and cost efficiency is not without its challenges. Addressing
issues such as efficient integration of diverse data types,
predictable performance under heavy workloads, and
resource optimization requires thoughtful architectural
choices.

This white paper highlights how NRDB’s architecture is
purpose-built to tackle these challenges head-on. Its
scalable and resilient design provides a robust foundation for
meeting the demands of modern observability workloads,
enabling organizations to achieve operational efficiency with
real time analytics. NRDB’s architecture is a testament to our
commitment at New Relic to providing world-class solutions
that help organizations achieve their business objectives
with agility and confidence.

New Relic remains committed to further enhancing
NRDB’s capabilities through continuous innovation and by
addressing evolving needs of its customers. As technology
advances, NRDB will continue to deliver cutting-edge
solutions, ensuring that customers can unlock the full
potential of their data.

Through the platform, we use one SQL-like query language
for users to interact with the data.

This spans to all data transformation activities. Users can
create data (or entity) synthesis rules, data deletion (or
drop rules) or obfuscation rules, all of which execute on
the customer environment or the New Relic Intelligent
Observability Platform.

After the data is ingested, users can configure alerts
or define service levels, which the system evaluates at
pre-defined cadences. Finally users can query the data
directly using the query builder, through dashboards or via
APIs. During all these activities, the same language is used
to reduce the cognitive burden for users. While the amount
of grammar supported might vary slightly, it provides an
intuitive way to interact with the data.

Unified Query Language

Conclusion

© Copyright 2025, New Relic, Inc. All rights reserved. All
trademarks, trade names, service marks and logos referenced
herein belong to their respective companies. 02.2025

https://docs.newrelic.com/docs/new-relic-solutions/new-relic-one/core-concepts/what-entity-new-relic/#entity-synthesis
https://newrelic.com/blog/nerdlog/how-to-drop-data
https://docs.newrelic.com/docs/logs/ui-data/obfuscation-ui/
https://docs.newrelic.com/docs/tutorial-create-alerts/create-new-relic-alerts/
https://docs.newrelic.com/docs/service-level-management/create-slm/
https://docs.newrelic.com/docs/query-your-data/explore-query-data/get-started/introduction-querying-new-relic-data/
https://docs.newrelic.com/docs/query-your-data/explore-query-data/get-started/introduction-querying-new-relic-data/
https://docs.newrelic.com/docs/query-your-data/explore-query-data/get-started/introduction-querying-new-relic-data/

