
Report / April 2024

2024 State of the
Java Ecosystem
An in-depth look at one of the most popular programming languages

2 of 172022 State of Logs / Contents ↑2024 State of the Java Ecosystem 2 of 17

Contents

06 Eclipse Adoptium rising in popularity amongst
JDK vendors

04 New Java versions being adopted faster

03 Overview

08 The most common Java application configurations

17 About New Relic

15 The most common types of Java-related questions
and requests asked by developers

16 Methodology

11 Popular Java frameworks and libraries for
logging, encryption, and database

3 of 172022 State of Logs / Contents ↑

New Relic has been monitoring the Java ecosystem for the past few years
to uncover shifts in how developers are using it, including whether they’re
adopting Java 21 at a faster rate than other Java versions, vendor- and
community-supported Java Developer Kit (JDK) trends, and the types of
Java-related questions asked by developers using the New Relic generative
AI (GenAI) observability assistant.

This annual report provides context and insights into the current state of the
Java ecosystem based on data from hundreds of thousands of applications
reporting to New Relic monthly.

The 2024 report examines the following topics:

	• The most-used Java versions in production

	• The most popular JDK vendors

	• The use of compute and memory in Java applications

	• The most popular Java frameworks and libraries for logging, encryption,

and databases

	• The most common types of Java-related questions and requests asked

by developers

Overview

3 of 17 Contents ↑2024 State of the Java Ecosystem

4 of 17

First, let’s look at the most-used Java versions in production.

At one time, Oracle only released new versions with major updates and
changes in the JDK. Now, Oracle releases new Java versions every six
months—typically in March and September—with each release containing
a handful of new features and bug fixes. Every two years, Oracle introduces
a new Java long-term-support (LTS) version with updates to help improve
stability, security, and performance, which developers often cite as one of
the most important factors for upgrading Java versions.

Oracle released Java 21 in September 2023, which marked a significant
milestone for Java with notable improvements to preview features like
virtual threads and upgraded libraries, as well as advancements to syntax
that put Java on par with many more modern languages.

 Contents ↑

New Java versions being
adopted faster

2024 State of the Java Ecosystem

Java long-term-support version adoption by year

5 of 17

In the six months after the release of Java 21, 1.4% of applications monitored
by New Relic were using it. To put this into perspective, in the six months
after Java 17 was introduced, only 0.37% of applications were using it, which
is 287% fewer.

In addition, the adoption rate of Java 17 far exceeded what the developer
world saw when Java 11 was introduced. About a tenth (9%) of applications
were using Java 17 in production in 2023, and now 35% of applications are
using Java 17, representing a nearly 300% growth rate in one year. It took
years for Java 11 to reach anywhere near that level.

Less than 2% of applications were using Java non-LTS versions, which
makes sense since they’re usually not used in production.

 Contents ↑

of apps are using Java 17

35%

2024 State of the Java Ecosystem

7

8

11

17

21

2.5%
1.7%

0.3%
0.2%

28.8%

32.9%

35.4%

1.4%

33.0%

56.1%

9.1%

46.5%

48.4%

0.4%

84.5%

11.1%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

Ja
va

 lo
ng

-t
er

m
-s

up
p

or
t v

er
si

on
s

% of Java applications

2020 2022 2023 2024

6 of 17 Contents ↑

Now let’s look at the most popular JDK vendors.

Java used to be closed-source or proprietary, which meant developers
could only download the JDK directly from Sun Microsystems. However,
roughly 10 years after Sun Microsystems released the first version of Java,
Oracle released the first open-source Java version. OpenJDK maintains it
and allows developer communities and vendors like Microsoft and Amazon
to maintain other versions of the JDK.

In 2020, Oracle was the most popular JDK vendor, comprising roughly 75%
of the Java market. There was a noticeable movement away from Oracle
binaries after the more restrictive licensing of its JDK 11 distribution (before
the return to a more open stance with Java 17), and we’ve seen a steady
decline year-over-year (YoY) ever since then. While Oracle retained the top
spot in 2022 (34%), it slipped to 29% in 2023, and it’s now at 21%—which
represents a 28% decrease in one year.

Eclipse Adoptium rising
in popularity amongst
JDK vendors

2024 State of the Java Ecosystem

https://newrelic.com/blog/nerd-life/state-of-java?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-java&utm_content=report
https://newrelic.com/resources/report/2022-state-of-java-ecosystem?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-java&utm_content=report#toc-oracle-popularity-is-shrinking-amazon-is-on-the-rise
https://www.google.com/url?q=https://newrelic.com/resources/report/2023-state-of-the-java-ecosystem?utm_source%3Dpdf%26utm_medium%3Dasset%26utm_campaign%3Dglobal-ever-green-java%26utm_content%3Dreport%23toc-amazon-is-now-the-most-popular-jdk-vendor&sa=D&source=editors&ust=1714383386637820&usg=AOvVaw1DvZkOm6nhVLLEueplSsQP

7 of 17 Contents ↑

The use of Amazon increased to 31% of the market in 2023 (up from
2.2% in 2020 and 22% in 2022), but has dropped to 18% in 2024, which
represents a 43% decrease YoY.

The rising star this year is Eclipse Adoptium, adoption of which rose 50% YoY
from 12% to 18%. Because Eclipse Adoptium is community-managed, this
JDK tends to be updated more frequently than the Oracle and Amazon JDKs.

The most popular JDK vendors by year

are using the Eclipse
Adoptium JDK

18%

2024 State of the Java Ecosystem

Amazon

IcedTea

Azul Systems

Oracle Corporation

BellSoft

Red Hat

Debian

SAP SE

Eclipse Adoptium

Ubuntu

17.8%

6.2%

2.8%

18.2%

9.0%

0.4%

0.8%

20.8%

2.7%

31.4%

5.7%

1.9%

12.1%

10.5%

3.0%

28.8%

1.8%

22.0%

8.2%

2.5%

11.5%

6.1%

2.9%

34.5%

5.4%

0.0% 5.0% 15.0% 25.0%10.0% 20.0% 30.0% 35.0% 40.0%

JD
K

 v
en

d
or

s

% of Java applications

2022 2023 2024

https://newrelic.com/blog/nerd-life/state-of-java?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-java&utm_content=report
https://newrelic.com/resources/report/2022-state-of-java-ecosystem?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-java&utm_content=report#toc-oracle-popularity-is-shrinking-amazon-is-on-the-rise

8 of 17 Contents ↑

Next, we look at the use of garbage collectors, compute, and memory in
Java applications.

Garbage in, garbage out

Java garbage collectors (GCs) are memory management components used
to prevent memory leaks, optimize memory usage, and ensure the overall
performance and stability of Java applications.

Some Java versions only support specific GCs, so which GC developers use
is partially dependent on their Java version.

Since Java 11, the Garbage-First (G1) GC has been the default. Being the
default collector might explain why 43% of customers are using it and why
there was a big jump in usage for Java 11, 17, and 21 compared to Java 7 and
8. In addition, one of G1’s primary benefits is that it clears smaller regions
instead of clearing large regions all at once, which optimizes the collection
process. It also rarely freezes execution and can collect both the young and
old generations concurrently, making it a great default for developers.

The second most popular GC is Serial (37%), which is ideal for applications
or systems that run on a single processor or where a high number of Java
virtual machines (JVMs) are running on the same machine. It also has lower
CPU and memory overhead compared to more complex GCs, making it
suitable for resource-constrained environments.

The most common Java
application configurations

Garbage collectors used by Java LTS version

are using the G1 garbage
collector

43%

2024 State of the Java Ecosystem

CMS

G1

Parallel

Serial

ZGC

21.0%

16.1%

4.0%

3.7%

44.5%

3.1%

24.4%

72.1%

0.1%

46.4%

22.3%

37.2%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 70.0%60.0% 80.0%

G
ar

b
ag

e
co

lle
ct

or
s

% of Java applications

Java 7 and 8 Java 11 Java 17 and 21

9 of 17 Contents ↑

Compute and memory settings

The New Relic data shows a 18% YoY increase in applications running with
four or fewer cores.

The drive to run smaller makes a lot of sense in cloud environments where
people are often deploying containers. But this trend can pose unexpected
issues for some applications. In particular, many of the concurrent benefits
from the default G1 GC on recent JVMs vanish when running with fewer
than two cores. All those single-core instances may as well be using the
Serial collector—and paying the performance cost of that.

Logical processors (cores) available by Java applications in 2023 and 2024

are using 1–4 cores

68%

2024 State of the Java Ecosystem

0.0%

10.0%

40.0%

20.0%

50.0%

30.0%

60.0%

70.0%

1–4 5–8 9–16 17–32 33–64 64+

%
 o

f J
av

a
ap

p
lic

at
io

ns

Number of logical processors (cores) available

2023 2024

68.0%

14.8%

9.8%

3.6% 2.8% 1.1%

57.7%

25.0%

8.2%
4.1%

3.0% 2.0%

10 of 17 Contents ↑

When looking at JVM memory settings, 32% of Java applications use
1 GB or less and 68% use more than 1 GB. This equates to a 15% increase in
applications using more than 1 GB of memory YoY.

JVM memory settings heap size by year

2024 State of the Java Ecosystem

<=512 MB

4 GB but <=8 GB

512 MB but <=1 GB

8 GB but <=16 GB

1 GB but <=2 GB

16 GB but <=32 GB

2 GB but <=3 GB

32 GB but <=64 GB

64 GB

3 GB but <=4 GB

15.2%

16.6%

27.6%

9.0%

2.7%

0.7%

0.2%

10.7%

9.6%

7.8%

21.9%

22.5%

19.0%

1.9%

6.6%

4.2%

6.5%

0.8%

0.3%

9.0%

9.3%

0.0% 5.0% 15.0% 25.0%10.0% 20.0% 30.0%

JV
M

 m
em

or
y

se
tt

in
g

s
he

ap
 s

iz
es

% of Java applications

2023 2024

11 of 17 Contents ↑

Every Java developer uses frameworks and libraries to streamline the
application development process by using pre-written code for common
tasks like web development and database connectivity. Libraries are
used to enhance the functionality of an application. Here we examine
the most popular frameworks and libraries for logging, encryption, and
database connectivity.

Log4j is the most popular logging framework
for Java applications

Any software application or system can have bugs and issues in the
testing or production environments, and developers use logging tools
to troubleshoot issues and fixes. However, logging is only useful when
it provides the required information from the log messages without
adversely impacting the application’s performance. Software developers
use various logging frameworks to solve these issues. In fact, 91% of the
Java applications reporting to New Relic use logging frameworks.

Popular Java frameworks
and libraries for logging,
encryption, and database

2024 State of the Java Ecosystem

12 of 17 Contents ↑

The most-used logging framework was Log4j with 76% of Java applications
using it, followed by JBoss Logging (61%) and Logback (52%).

Also, most (83%) Java developers rely on SLF4j, which is a framework
that acts as an abstraction for other types of Java logging frameworks.
SLF4j enables software developers to use the logging framework of their
choice and enables applications to switch to any Java logging framework
interchangeably without impacting its implementations or doing any
changes. Due to this functionality, SLF4j makes applications independent
of logging frameworks, providing more flexibility and portability for logging
across any part of the system. It also means that Java applications can use
more than one logging framework.

The most popular logging frameworks for Java applications

are using the Log4j logging
framework

76%

2024 State of the Java Ecosystem

JBoss Logging

Log4j

Logback

Apache Commons
Logging

MinLog

reload4j

61.2%

76.4%

52.2%

29.2%

1.2%

1.1%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 70.0%60.0% 80.0%

Lo
g

g
in

g
 fr

am
ew

or
ks

% of Java applications

13 of 17 Contents ↑

Bouncy Castle is the most popular encryption
library for Java applications

More than one-third (41%) of the Java applications reporting to New Relic
use encryption libraries: 17% use Bouncy Castle, 16% use Spring Security,
and 6% use Jasypt. Bouncy Castle has been a popular library for encryption
for many years due to its set of cipher suites and utilities.

While only 0.09% developers use the Amazon Corretto Crypto Provider
(ACCP) library, we expect more applications to use it in the near future as
companies and developers look to consolidate vendors and because it
typically provides better performance.

The most popular encryption libraries for Java applications

are using the Bouncy Castle
encryption library

17%

2024 State of the Java Ecosystem

Spring Security

Bouncy Castle

Jasypt

Tink

Apache Commons
Crypto

Conscrypt

Scrypt

Amazon Corretto
Crypto Provider

15.8%

17.1%

6.4%

0.5%

0.5%

0.3%

0.1%

0.1%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 14.0%12.0% 18.0%16.0%

E
nc

ry
p

ti
on

 li
b

ra
ri

es

% of Java applications

14 of 17 Contents ↑

Oracle is the most popular database system
for Java applications

When looking at databases, Oracle Database is the most widely used, with
17% of Java applications reporting to New Relic using it. Oracle Database
is known for its scalability and ability to manage large amounts of data
quickly and efficiently. As such, it tends to be the preferred database
system for enterprises. Additionally, it offers customer support and a
robust set of tools.

The second most popular database system is PostgreSQL, with 14% of
Java applications reporting to New Relic using it. While Oracle Database is
managed by Oracle directly and available through a license, PostgreSQL
is an open-source database that’s free to use and preferred for managing
read-write operations and complex queries.

MySQL comes in third, with 13% of Java applications using it. MySQL is also
an open-source database. It offers fewer features than Oracle Database
and PostgreSQL, which makes it more stable and faster at processing,
especially when processing read-only queries.

PostgresSQL has gained popularity in the last year because it’s more
compliant with the SQL specs and it supports more features than MySQL.
MySQL is still a top database system, but we can see that its popularity is
decreasing while PostgresSQL’s popularity is growing.

The most popular database systems for Java applications

2024 State of the Java Ecosystem

are using the Oracle
Database

17%

MongoDB

MySQL

PostgreSQL

Oracle Database

DynamoDB

SQL Server

Cassandra

Elasticsearch

MariaDB

Redshift

14.4%

17.3%

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 14.0%12.0% 18.0%16.0%

D
at

ab
as

e
sy

st
em

s

% of Java applications

12.5%

7.4%

4.9%

4.4%

2.7%

2.5%

1.4%

0.3%

15 of 17 Contents ↑

The most common types of Java-related questions and requests asked by developers using New Relic AI

We also looked at what kind of Java-related questions and requests
developers are asking via the New Relic AI GenAI observability assistant.
Since January 2024, the data shows that 34% of the 483 Java-related
questions were how-to type (learning) questions, 21% were related to
querying for a specific metric, 14% were about configuration, and 14% were
about troubleshooting.

Sample questions and requests include:

•	 How do I log API calls in my Java Spring Boot?

•	 If the Java framework changed from Tomcat to JBoss, do I need to
reconfigure the agent?

•	 Create a dashboard for container memory utilization vs. JVM heap
utilization.

•	 This monitored application uses the Vaadin framework in Java. It has
high memory consumption. What could it be?

•	 In JVM, what does G1 Eden Space heap usage mean?

The most common types of
Java-related questions and
requests asked by developers

2024 State of the Java Ecosystem

of Java-related questions
and requests are about how
to do something

34%

Learning

Troubleshooting

Explanation

Uncategorized

Recommendation

Query for specific metric

Configuration

Random/unrelated to New Relic

Health check

Navigation

33.5%

6.0%

13.8%

14.3%

21.1%

https://newrelic.com/platform/new-relic-ai?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-java&utm_content=report

16 of 17

Methodology
This report is based on data gathered from hundreds of thousands of
applications reporting to New Relic that provide performance information.
Therefore, it doesn’t provide a global picture of Java usage. All data was
collected in 2024.

New Relic anonymized and deliberately coarse-grained the appropriate
data to give general overviews of the Java ecosystem. Any detailed
information that could help attackers and other malicious parties was
deliberately excluded from this report.

Start monitoring your Java data with New Relic today.

Install the Java Quickstart

 Contents ↑2024 State of the Java Ecosystem

https://www.google.com/url?q=https://newrelic.com/instant-observability/java?utm_source%3Dpdf%26utm_medium%3Dasset%26utm_campaign%3Dglobal-ever-green-java%26utm_content%3Dreport&sa=D&source=editors&ust=1714383386662185&usg=AOvVaw0onIxSkZ51UdTprkLdF9-7

17 of 17

About New Relic
As a leader in observability, New Relic empowers engineers with a
data-driven approach to planning, building, deploying, and running
great software. New Relic delivers the only unified data platform with
all telemetry—metrics, events, logs, and traces—paired with powerful
full-stack analysis tools to help engineers do their best work with data,
not opinion.

Delivered through the industry’s first usage-based pricing that’s
intuitive and predictable, New Relic gives engineers more value for their
money by helping improve planning cycle times, change failure rates,
release frequency, and mean time to resolution (MTTR). This helps the
world’s leading brands and hypergrowth startups to improve uptime,
reliability, and operational efficiency and deliver exceptional customer
experiences that fuel innovation and growth.

© Copyright 2024, New Relic, Inc. All rights reserved. All
trademarks, trade names, service marks, and logos referenced
herein belong to their respective companies. 04.2024

 Contents ↑2024 State of the Java Ecosystem

