
Why Distributed Tracing
is Essential for APM
Reduce MTTR in complex distributed
application environments

eBook / November 2022

2 of 15Why Distributed Tracing is Essential for APM

04

05

06

07

08

09

Tracing the path through
distributed systems

When to use traces

How traces work

Connecting the dots

Why organizations need
distributed tracing

Gaining visibility into the
data pipeline

10

11

12

13

14

15

Actionable traces with
tail-based sampling

Analysis and visualization

Addressing the
management burden

Heads or tails? You don't need
to flip a coin

Next Steps

About New Relic

Contents

03 Cutting through the complexity

3 of 15

Modern software environments and architectures like
microservices have the potential to accelerate application
development. But in many organizations, software
engineering teams face a complex environment, which
makes it difficult to diagnose and resolve performance
issues and errors before they impact reliability and the
customer experience.

Microservices environments can include dozens or hundreds
of services, making it hard to determine request paths and
diagnose issues. And application performance monitoring
(APM) burdens only increase with orchestration, automation,
and CI/CD for frequent software deployments. Without the
proper monitoring instrumentation, organizations risk their
teams having to search distributed systems repeatedly,
which increases mean time to resolution (MTTR) and takes
time from innovative software development.

Observability cuts through software complexity and provides
end-to-end visibility that enables teams to solve problems
faster, work smarter, and create better digital experiences
for their customers. Observability creates context and
actionable insight by, among other things, combining four
essential types of observability data: metrics, events, logs,
and traces (MELT).

Traces—more precisely, distributed traces—are essential
for software teams that have transitioned (or are considering
a move) to the cloud and have adopted microservices
architectures. That’s because distributed tracing is the best
way to understand quickly what happens to requests as they
transit through the microservices that make up distributed
applications.

Business leaders, DevOps engineers, product owners, site
reliability engineers (SREs), software team leaders, or other
stakeholders can use distributed tracing to find bottlenecks
or errors and gain an edge with faster troubleshooting.

Cutting through
the complexity

Why Distributed Tracing is Essential for APM

4 of 15

Distributed tracing is now table stakes for operating and monitoring
modern application environments. When teams monitor software and
system performance for observability, tracing is a way to monitor and
analyze requests as they propagate through a distributed environment and
hop from service to service.

Distributed tracing is the ability to trace a solution to track and observe
service requests as they flow through distributed systems by collecting
data as the requests go from one service to another. The trace data
helps teams understand the flow of requests through the microservices
environment and pinpoint where failures or performance issues occur in the
system—and why.

When teams instrument systems for distributed tracing, all transactions
generate trace telemetry, from the frontend user to the backend database
calls. For example, when customers click on a cart to make a purchase in
an e-commerce application, that request travels through several distinct
frontend and backend services across multiple containers, serverless
environments, virtual machines, different cloud providers, on-premises
(on-prem), or any combination of these. The request might include the
inventory service to ensure there is inventory available, payment service,
and shipping service. And ultimately the request completes and comes
back to the user. Every time a request hops from one service to another,
it emits a span with tracing telemetry. Once the request finishes, spans
are stitched together to create a complete trace of the request’s journey
through the system.

With distributed tracing, teams can:

	• Trace the path of a request as it
travels across a complex system.

	• Understand upstream and
downstream service dependencies.

	• Discover the latency of the
components along that path.

	• Understand where bottlenecks are
occurring in the request path.

	• See and analyze where errors
happen in the transaction at the
individual service level.

Tracing the path
through distributed
systems

Scatter chart and waterfall visualization showing how much time each request took on
each step across application services

Why Distributed Tracing is Essential for APM

https://docs.newrelic.com/docs/distributed-tracing/concepts/introduction-distributed-tracing/?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook

5 of 15

When to use traces

In general, distributed tracing is the best way for DevOps, operations,
software, and SREs to get answers to specific questions quickly in
environments where the software is distributed or relies on serverless
architectures. As soon as a request involves a handful of microservices,
having a way to see how all the different services are working together is
essential.

Trace data provides context for what is happening across the application as
a whole and between services and entities. If there were only raw events for
each service in isolation, there would be no way to reconstruct a single chain
between services for a particular transaction.

Because applications often call multiple other applications depending on the
task they’re trying to accomplish, they also often process data in parallel. So
the call chain can be inconsistent and timing unreliable for correlation. The
only way to ensure a consistent call chain is to pass trace context between
each service to identify a single transaction uniquely through the entire chain.

This means teams should use distributed tracing to get answers to
questions such as
	› What is the health of the services that make up a distributed system?
	› What is the root cause of errors and defects within a distributed system?
	› Where are performance bottlenecks that could impact the customer

experience?
	› Which services have problematic or inefficient code that teams should

prioritize for optimization?

A quick guide to distributed tracing
terminology:

	• A transaction is the function and
method calls that make up that unit
of work in a software application.
It starts when the method is called
and ends when the method returns
or errors out.

	• A request is how applications,
microservices, and functions talk to
one another.

	• A trace is performance data about
requests as they flow through
microservices.

	• A span represents operations or
segments that are part of a trace.

	• A root span is the first span in a
trace.

	• A child span is a subsequent span,
which can be nested.

Why Distributed Tracing is Essential for APM

6 of 15

How traces work

Stiched-together traces form special events called spans, which help track
a causal chain through a microservices ecosystem for a single transaction.
To accomplish spans, each service passes correlation identifiers, known as
trace context, to each other. This trace context is used to add attributes to
the span.

In the table above, the timestamp and duration data shows the credit
card company has the slowest service in the transaction with 12 of the 23
seconds—more than half the time for this entire trace.

Example of a distributed trace composed of the spans in a credit card transaction

How did we get 12 seconds? The span
to contact the issuing bank is called
a child span. The span to contact the
credit card company is its parent. So, if
the bank request took three seconds,
the credit card company took 15
seconds, and you subtract the child
from the parent, it took 12 seconds to
process the credit card transaction.

Why Distributed Tracing is Essential for APM

7 of 15

Connecting the dots

As organizations began moving to distributed applications, they quickly
realized they needed a way to have visibility into individual microservices
in isolation and the entire request flow. This migration is why distributed
tracing became a best practice for gaining needed visibility into what was
happening. And combining traces with the other three essential types of
telemetry data—metrics, events, and logs—gives teams a complete picture
of their software environment and performance for end-to-end observability.

Distributed tracing also requires trace context. This requirement means
assigning a unique ID to each request, assigning a unique ID to each step in a
trace, encoding this contextual information, and passing (or propagating) the
encoded context from one service to the next as the request makes its way
through an application environment. This process lets the distributed tracing
tool correlate each step of a trace, in the correct order, along with other
necessary information to monitor and track performance.

A single trace typically captures data about:
	› Spans (service name, operation name, duration, and other metadata)
	› Errors
	› Duration of important operations within each service (such as internal

method calls and functions)
	› Custom attributes

W3C Trace Context has become the
standard for propagating trace context
across process boundaries. It lets all
tracers and agents that conform to the
standard participate in a trace, with
trace data propagated from the root
service to the terminal service. Many
observability vendors, including New
Relic, fully support the W3C Trace
Context standard.

Why Distributed Tracing is Essential for APM

https://www.w3.org/TR/trace-context/

8 of 15

Why organizations need
distributed tracing

As new technologies and practices—cloud, microservices, containers,
serverless functions, DevOps, site reliability engineering, and more—increase
velocity and reduce the friction of getting software from code to production,
they also introduce new challenges:
	› More points of failure within the application stack
	› Increased MTTR due to the complexity of the application environment
	› Less time for teams to innovate because they need more time to

diagnose problems

For example, a slow-running request might impact the experience of a set
of customers. That request is distributed across multiple microservices and
serverless functions. Several teams own and monitor the various services
involved in the request, and none have reported any performance issues
with their microservices. Without a way to view the performance of the entire
request across the different services, it’s nearly impossible to pinpoint where
and why the high latency is occurring and which team should address the
issue. As part of an end-to-end observability strategy, distributed tracing
addresses the challenges of modern application environments.

Why Distributed Tracing is Essential for APM

By deeply understanding the
performance of every service—both
upstream and downstream—software
teams can more effectively and
quickly:
	› Identify and resolve issues to

minimize the impact on the
customer experience and business
outcomes.

	› Measure overall system health and
understand the effect of changes on
the customer experience.

	› Prioritize high-value areas for
improvement to optimize the digital
customer experiences.

	› Innovate continuously with
confidence to outperform the
competition.

9 of 15

Distributed tracing requires the reporting and processing of tracing
telemetry. The volume of trace data can grow exponentially over time as
the volume of requests increases and as teams deploy more microservices
within the environment.

For this reason, many organizations use data sampling to manage the
complexity and cost associated with transmitting trace activity. Ideally, the
sampled data represents the characteristics of the larger data population.

Software teams need the flexibility to choose head- or tail-based sampling
to meet the monitoring requirements for each application.

Efficient head-based sampling

Head-based sampling collects and stores trace data randomly while
the root (first) span is processed to track and analyze what happens to
a transaction across all of the services it touches. Typically, head-based
sampling happens within the agent responsible for collecting trace
telemetry by randomly selecting which traces to sample for analysis. The
sampling decisions occur before traces are complete. Because there is
no way to know which trace might encounter an issue, teams might miss
traces that contain unusually slow processes or errors.

Head-based sampling works well to provide an overall statistical sampling
of requests through a distributed system. It does a good job of catching
traces with errors or latency in applications with a lower volume of
transactions and environments with a mix of monolith and microservices-
based architectures. Head-based sampling is an efficient way to sample
a vast amount of trace data in real time, and there is little to no impact on
application performance.

Gaining visibility into
the data pipeline

Advantages

	• Works well for applications with
lower transaction throughput

	• Fast and simple to get up and
running

	• Appropriate for blended monolith
and microservice environments
where monoliths still reign supreme

	• Little-to-no impact on application
performance

	• A low-cost solution for sending
tracing data to third-party vendors

	• Statistical sampling provides
adequate transparency into the
distributed system

Limitations

	• Traces are sampled randomly
	• Sampling happens before a trace

has fully completed its path through
many services, so there is no way
to know upfront which trace may
encounter an issue

	• In high-throughput systems, traces
with errors or unusual latency might
be sampled out and missed

Why Distributed Tracing is Essential for APM

10 of 15

Actionable traces with tail-based sampling

Distributed tracing with tail-based sampling helps software teams
troubleshoot issues in highly distributed, high-volume systems where teams
must observe all trace telemetry and sample the traces that contain errors or
unusual latency. Tail-based sampling collects all information about that trace
when it’s complete.

Tail-based sampling is less of a nice to have and more of a requirement when
teams need the highest level of granularity for troubleshooting.

Some organizations need their distributed tracing tool to observe and
analyze every span—every hop between services—and surface the most
action-able traces for troubleshooting because downtime could cost millions
of dollars, especially during peak events.

For example, an organization with an average span load of three million spans
per minute sees spikes of 300 million spans per minute when it launches a
new product. Traditional head-based sampling is inadequate for this type of
organization with a high transaction volume.

Not every trace is equal. To choose the best sampling method, teams should
evaluate based on the use case and cost-over-benefit analysis and consider
the monitoring needs of each application.

Advantages

	• Observes and analyzes 100% of
traces

	• Samples after traces are fully
completed

	• Visualizes traces with errors or
uncharacteristic slowness more
quickly

Limitations

	• May require additional gateways,
proxies, and satellites to run
sampling software

	• Requires some toil to manage and
scale third-party software in some
cases

	• Incurs additional costs for
transmitting and storing more data

Traditional head-based sampling (left) and tail-based sampling (right)

Why Distributed Tracing is Essential for APM

11 of 15

Analysis and visualization

Collecting trace data is a waste of time if software teams don’t have an
easy way to analyze and visualize the data across complex architectures. A
comprehensive observability platform allows teams to see all their telemetry
and business data in one place. It also provides the context they need to
derive meaning, take the right action quickly, and work with the data in
meaningful ways.

A distributed trace visualization ideally has a tree-like structure. The
visualization includes child spans that refer to one parent span and lets teams
see which spans have high latency and errors within a trace. It also helps
teams understand the exact error details and what services are slow, with
detailed attributes to find issues and fix them quickly.

Observability vendors like New Relic use this visualization structure for
troubleshooting and analysis.

New Relic distributed tracing

Why Distributed Tracing is Essential for APM

12 of 15

Troubleshooting distributed systems is a classic needle-in-a-haystack
problem, and instrumenting systems for tracing then collecting and
visualizing the data can be labor-intensive and complex to implement. Fully
managed software-as-a-service (SaaS) solutions allow teams to eliminate
the burden of deploying, managing, and scaling third-party gateways or
satellites for data collection.

The New Relic observability platform makes it easy to instrument
applications with a single agent deployment for almost any programming
language and framework. Teams can use open-source tools and open
instrumentation standards to instrument environments. OpenTelemetry is
considered the standard for open-source instrumentation and telemetry
collection.

The New Relic platform also offers a fully managed tail-based sampling
service that observes and analyzes 100% of spans across a distributed
system and provides visualizations for traces with errors or unusual latency,
so teams can quickly identify and troubleshoot issues.

The platform observes every span and provides metrics, error data, and
essential traces in a single view. It provides critical insights by saving the
most actionable data to the New Relic platform. The result is unparalleled
visibility into distributed systems, enabling teams to understand the impact
of downstream latency or errors with detailed metrics and then drill down to
the saved trace data for the most relevant traces.

Distributed tracing is included with New Relic APM, with low-latency and
low-cost data transfer from New Relic agents, instrumentation within
serverless functions, or any other data source, including third-party
instrumentation.

Addressing the
management burden

With New Relic, you can:

	• Enjoy a fully managed, cloud-local
service that scales on-demand.

	• Observe and analyze 100% of the
traces across distributed systems.

	• Visualize the most actionable traces
that contain errors or unusual
latency.

	• Eliminate the toil of deploying,
managing, supporting, and scaling
third-party gateways or satellites in
environments.

	• Leverage its full support of open
instrumentation and standards for
trace telemetry.

	• Reduce the cost of data egress
charges due to proximity to cloud
workloads.

	• Troubleshoot more efficiently.
	• Reduce mean time to detection

(MTTD) and MTTR with high-fidelity
actionable traces.

	• Empower engineers and developers
to focus on more important work,
such as developing new features.

Why Distributed Tracing is Essential for APM

https://newrelic.com/platform?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook
https://newrelic.com/solutions/opentelemetry?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook
https://newrelic.com/platform/application-monitoring?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook

13 of 15

Heads or tails? You don't
need to flip a coin

New Relic offers flexible options for distributed tracing so teams can make
head- or tail-based sampling decisions at the application level. For critical
applications where teams need to observe and analyze every trace, they
can select tail-based sampling without worrying about managing sampling
infrastructure.

New Relic is the only observability vendor that gives software teams the
flexibility to select distributed tracing with head-based sampling or fully
managed tail-based sampling. With less to manage, there’s more room for
innovation and gaining a competitive advantage.

The New Relic observability platform incorporates log management, APM, distributed
tracing, infrastructure monitoring, serverless monitoring, mobile monitoring, browser
monitoring, synthetic monitoring, Kubernetes monitoring,
and more.

Why Distributed Tracing is Essential for APM

14 of 15

To begin using New Relic APM with distributed tracing,
sign up for a free account today. Free accounts include 100 GB/month of
data ingest, one full platform user, and unlimited basic users.

Already have a New Relic account? Getting started with New Relic APM
distributed tracing is easy; just use our latest APM agent. Learn about
distributed tracing setup options.

Next steps

Why Distributed Tracing is Essential for APM

Get Started Now

https://newrelic.com/signup?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook
https://docs.newrelic.com/docs/distributed-tracing/concepts/quick-start/?utm_source=pdf&utm_medium=content&utm_campaign=global-ever-green-apm-dt-ebook&utm_content=ebook

15 of 15

About New Relic
As a leader in observability, New Relic empowers engineers with a
data-driven approach to planning, building, deploying, and running great
software. New Relic delivers the only unified data platform that empowers
engineers to get all telemetry—metrics, events, logs, and traces—paired
with powerful full-stack analysis tools to help engineers do their best work
with data, not opinions. Delivered through the industry’s first usage-based
consumption pricing that’s intuitive and predictable, New Relic gives
engineers more value for the money by helping improve planning cycle
times, change failure rates, release frequency, and MTTR. This helps the
world’s leading brands including adidas Runtastic, American Red Cross,
Australia Post, Banco Inter, Chegg, GoTo Group, Ryanair, Sainsbury’s, Signify
Health, TopGolf, and World Fuel Services
(WFS) improve uptime, reliability, and operational efficiency to deliver
exceptional customer experiences that fuel innovation and growth.

© Copyright 2022, New Relic, Inc. All rights reserved. All
trademarks, trade names, service marks and logos referenced
herein belong to their respective companies. 11.2022

Why Distributed Tracing is Essential for APM

