
What Full-Stack
Observability

Requires Today
Create a single source of truth with the three core

elements of full-stack observability

What Full-Stack Observability Requires Today

02

Table of Contents
Introduction� 03

Architectures Require a New Approach to Observability� 05

The Core Elements of Full-Stack Observability� 10

A Single (Open) Source of Truth� 12

Connected Context � 17

Easier, Faster, More Customizable Exploration � 19

The Benefits of Full-Stack Observability� 24

01

What Full-Stack Observability Requires Today

03

Introduction
Observability has become an important practice for modern digital

enterprises. No other strategy so effectively enables engineers to deliver

excellent customer experiences with software, despite the complexities

and distributed nature of their application and infrastructure landscape.

What Full-Stack Observability Requires Today

04

OBSERVABILITY IS NOT
A FANCY SYNONYM
FOR MONITORING.
Monitoring gives software teams instrumentation, which

collects data about their systems and allows them to quickly

respond when errors and issues occur. Observability, on the

other hand, is the practice of instrumenting those systems

with tools to gather actionable data that provides not only

the when of an error or issue, but, more important, the why.

But before we go any further, let’s get two things out of the way:

With full-stack observability, modern software teams are better equipped to:

•	 Deliver high-quality software at speed and scale

•	 Build a sustainable culture of innovation

•	 Optimize investments in cloud and modern tools

•	 See the real-time performance of their digital business

Full-stack observability bridges the gaps between site reliability engineering (SRE) and DevOps teams, developers, and business leaders.

So, how do you establish full-stack observability in your environment? And what results can you expect when you achieve it? Read on to

learn about the three core elements of full-stack observability.

OBSERVABILITY MUST BE
END-TO-END, PROVIDING
VISIBILITY INTO THE
ENTIRE LANDSCAPE.
From the experience of the frontend UI to the container resources

configured for Kubernetes deployments, you must apply the

principles of full-stack observability to your full IT environment.

What Full-Stack Observability Requires Today

05

Chapter 1

Architectures
Require a New
Approach to
Observability

What Full-Stack Observability Requires Today

06

The rate of technological innovation over
the past five to 10 years has been mind-
boggling, and it has had a tremendous impact
on software teams. Key trends include:

Pressure to innovate fast

Software teams face enormous pressure to rapidly and frequently

ship new features and experiences to market faster than the

competition. The cloud has grown the competitive landscape by

lowering the barrier to entry, demanding that software teams

deliver and adapt faster than ever—often doing so with fewer

resources. High performers deploy software between once

per hour and once per day, with elite performers deploying on

demand multiple times per day.

Higher customer expectations

Customers expect more and tolerate less. Slow, error-prone, or

poorly designed user experiences are non-starters with custom-

ers. If they can’t do what they came to do, they won’t come back.

According to mobile app developer Dot Com Infoway, 62% of peo-

ple uninstall an app if they experience mobile crashes, freezes, or

errors. Elite performers in software delivery performance restore

service in the event of an incident or defect that impacts users

in less than one hour, compared with low performers who take

between one week and one month to restore service.

62% OF
PEOPLE
UNINSTALL
AN APP
IF THEY
EXPERIENCE
MOBILE
CRASHES,
FREEZES,
OR ERRORS.

What Full-Stack Observability Requires Today

07

More technology options

Today, organizations build microservice architectures and

distributed systems on any number of cloud providers and com-

pute platforms. These services are easier than ever to adopt and

use, and increasingly work together seamlessly. You can pick and

choose various systems and services to support everything you

need in a modern technology stack while abstracting away the

management effort to configure and maintain the stack.

The rise of DevOps and automation

Companies are organizing around autonomous teams respon-

sible for the end-to-end design, delivery, and operation of ser-

vices they own in production. They sometimes leverage common

platforms and tooling that are provided as services by inter-

nal platform teams. Automation reduces repetitive, low-value

work (toil) and improves reliability. In a cloud native architec-

ture, everything in the stack is controlled by software; the

entire surface area can be configured via code. And because all

that automation is software, it can fail. Teams need to monitor

their continuous integration/continuous delivery (CI/CD) and

other automation tooling exactly as they would applications

that directly serve their customers. Gathering data about every

component within a system is the essence of observability.

“AUTOMATION
REDUCES
REPETITIVE,
LOW-VALUE
WORK (TOIL)
AND IMPROVES
RELIABILITY.”

What Full-Stack Observability Requires Today

08

These trends are creating four major challenges that drive the
need for full-stack observability of modern systems:

1. Greater complexity

 While cloud native technologies have transformed the way applications are built, delivered, and operated, they’ve

also created more complexity for the teams responsible for maintaining them. As monolithic applications are refac-

tored into microservices, where the lifetime of a container may be measured in minutes or less, suddenly software

teams have services that are constantly changing. Since each individual application is deconstructed into potentially

dozens of microservices, operations teams face a complexity of scale; they’re now responsible for services they

know little about yet must maintain.

2. Higher risk

Frequent deployments and dynamic infrastructure means introducing more risk more frequently. This increased

risk makes instant detection and rollback much more important than in the days of infrequent deployments. And as

companies adopt agile practices and continuous delivery to ship software faster, they’re adding yet another surface

area of software (via delivery tools and pipelines) that must be monitored and maintained.

What Full-Stack Observability Requires Today

09

3. Skills gaps

The explosion of microservices architectures has introduced new challenges as software teams must rethink how

they design, build, and deploy applications. Each team member must also understand and be able to troubleshoot

parts of an application they weren’t previously familiar with; today a database expert, for example, must know

about networking and APIs as well. The downside is that the number of new and different technologies that teams

must learn to use are too vast for any one person to master. Teams need ways to better understand those technol-

ogies in context of the work they accomplish.

4. Too many tools

Hybrid environments, thousands of containers in production, and multiple deployments per day result in huge

volumes of operational telemetry data. Juggling multiple monitoring tools and the necessary context switching to

find and correlate the data that matters most, or to find and resolve issues, takes up precious time that teams don’t

have when their customers are impacted by a production problem.

Given these trends and challenges, as well as the overall rate of technological change, teams need a single solution

that reduces complexity and risk, and that does so with speed and low overhead. A full-stack observability solution

must close the skills gap and be easy to use, understand, and navigate through when gathering essential context. The

solution must allow any team within an organization to see all of their telemetry data in one place and get the needed

context to quickly derive meaning and take the right action.

What Full-Stack Observability Requires Today

10

Chapter 2:

The Core
Elements of
Full-Stack
Observability

So let us clarify what we mean when we
refer to full-stack observability:

Full-stack observability is every engineer’s single source of truth as they

troubleshoot, debug, and optimize performance across their entire
stack. Users can find and fix problems faster in one unified experience
that provides connected context and surfaces meaningful analytics—

from logs, infrastructure and applications, distributed tracing, server-

less functions, all the way into end-user experience—without having to

onboard new tools or switch between them.

What Full-Stack Observability Requires Today

11

To achieve full-stack observability of your systems, we
believe you need three core elements:

1. A single (open) source of truth

Full-stack observability relies on ingesting any

telemetry data you want (metrics, events, logs,

and traces) from any source within your environ-

ment, from the frontend UI to the infrastructure

layer, without worrying how to scale or con-

text-switch between multiple tools.

2. Connected context

When you access metrics about the health

of your services, you should be able to

see how that service affects workloads,

how those workloads are affected by the

Kubernetes cluster that hosts them, and vice

versa. And you should be able to understand

how the issue between the cluster and the app is

affecting the end-user experience on your com-

pany’s website or e-commerce portal or mobile

app—all from one place.

3. Easier, faster, and more customizable
exploration

You ingest telemetry data from dozens of

sources, and you add context to better under-

stand interdependencies and upstream/down-

stream effects of issues. Finally, you need the

proper visualizations—that require zero config-

uration to start discovering insights—to speed

your exploration and troubleshooting. A full-

stack observability platform should present all

your telemetry data on one screen, from every-

where, in real time. In addition, the platform

should also allow you to build applications on top

of your telemetry data that exposes insights into

your specific landscape. For example, you could

build an application that tracks the cost of errors

and failures in a business process, attach real

dollars in aggregate to those failures, and pro-

vide a path to drill into the data to find the reason

why.

What Full-Stack Observability Requires Today

12

Chapter 3

A Single
(Open) Source
of Truth

For many years, the best way to collect telemetry for observability

was through agents. Software developers and operations teams

deployed agents inside their applications and hosts, and these

agents would collect metrics, events, traces, and log data, package

it up in proprietary ways, and send it for aggregation and display.

Although that continues to be an effective route for collecting

telemetry today, the industry has changed. Now there are many

more sources of telemetry. Many open systems and frameworks

for software development have built-in metrics, events, logs, and

traces that they emit in common formats.

For full-stack observability, you need to collect data from both

open and proprietary sources and combine it in one place. You

need to automatically apply instrumentation wherever it makes

sense, and add instrumentation where you need visibility the

most.

What Full-Stack Observability Requires Today

13

Metrics

Traces

Logs

Third-Party Data

In
te

gr
at

io
ns

 S
D

K
s

A

PI
s

METRICS EVENTS LOGS TRACES

Applications and
Microservices

Infrastructure
and Services

What Full-Stack Observability Requires Today

14

M.E.L.T: A quick
breakdown
At New Relic, we believe that metrics, events, logs, and traces (or

MELT) are the essential data types of observability. Here’s a brief

overview of each.

METRICS
Metrics are the starting point for full-stack observability.

They are low overhead to collect, inexpensive to store,

dimensional for quick analysis, and a great way to measure

overall health. Because of that, many tools have emerged

for metric collection, such as Prometheus, Telegraf, StatsD,

Dropwizard, and Micrometer. An “open” full-stack observ-

ability solution needs to be able to consume metrics from

any of these sources that diverse teams have adopted in

the modern digital enterprise.

EVENTS
Events are a critical (and often overlooked) telemetry type

that must be part of any full-stack observability solution.

Although events and logs share some similarities, the two

are often mistakenly conflated. Events are discrete, detailed

records of significant points of analysis. But they contain a

higher level of abstraction than the level of detail provided

by logs. Logs are comprehensive and discrete records

of everything that happened within a system; events are

records of selected significant things that happened with

metadata attached to the record to sharpen its context.

For example, when New Relic collects transaction events—

individual instances of the execution of a method or a code

block in a process—data is automatically added to show

the number of database calls executed and the duration of

those calls.

https://newrelic.com/platform/telemetry-data-101

What Full-Stack Observability Requires Today

15

LOGS
Logs are important when an engineer is in “deep” debug-

ging mode, trying to understand a problem. Logs provide

high-fidelity data and detailed context around an event,

so engineers can re-create what happened millisecond

by millisecond. Just as with metrics and traces, tools have

emerged to reduce the toil and effort of collecting, filter-

ing, and exporting logs. Common solutions include Fluentd,

Fluent Bit, Logstash, and AWS CloudWatch, as well as many

other emerging standards.

TRACES
Traces are valuable for showing the end-to-end latency of

individual calls in a distributed architecture. These calls

give specific insight into the myriad customer journeys

through a system. Traces enable engineers to under-

stand those journeys, find bottlenecks, and identify

errors so they can be fixed and optimized. Like with met-

rics, different tools (Jaeger, Zipkin, AWS X-ray, etc.) and

standards (W3C Trace Context and OpenTelemetry
project, for example) have emerged, allowing sophisticated

organizations to create custom solutions.

https://www.w3.org/TR/trace-context/
https://opentelemetry.io/
https://opentelemetry.io/

What Full-Stack Observability Requires Today

16

While most open source tools that provide essential instrumen-

tation also come with a discrete data store for collecting, stor-

ing, and making data available for analysis, this undermines the

utility of full-stack observability: It forces engineers and teams

to know and understand multiple tools. Without a unified data-

store, when issues (or worse, emergencies) arise, engineers need

to context-switch through multiple tools to find the source of the

problem. An open full-stack observability platform has interoper-

ability of all this data, irrespective of the source.

However, trying to handle all this data on your own will only pres-

ent another set of challenges. Are you recording the right data in

the right formats? Is your data pipeline big enough to handle the

load as demand on your software increases? Full-stack observ-

ability should reduce anxiety instead of adding to it.

To that end, a full-stack observability platform should provide a

unified database that:

•	 Gathers all your telemetry data in one place, giving you a

connected view of all the data points in your system, so you

can identify, understand, and resolve the issues that impact

your business

•	 Is built on a flexible schema, so you can quickly get answers to

questions you never had to ask before

•	 Scales as your business grows, and does so without limits to

support any unpredictable demands on your business

The importance of a unified datastore

https://newrelic.com/resources/white-papers/inside-nrdb-flexible-unified-database

What Full-Stack Observability Requires Today

17

Chapter 4

Connected
Context

Getting telemetry data from virtually anywhere into one place is

a good start, but it isn’t enough. Your data needs to be connected

in a way that lets you understand relationships between system

components, and it needs to be correlated with metadata so you

can understand its relationship to your business. Such connections

give your data context and meaning.

Context, for example, leads to curated views that surface the most

important information about your data, and model its specific

environment. Additionally, when all of your telemetry data and

connections are stored in one place, you can apply intelligence to

those very large data sets, and surface patterns, anomalies, and

correlations that are not easily identifiable by humans watching

dashboards.

What Full-Stack Observability Requires Today

18

Essentially, you need a way to see how all components in your

system are related to one another at any moment in time. It’s sim-

ply not feasible to maintain a mental map of your system when

it changes by the day, hour, or minute. Nor is it feasible to rely on

configuration to manage those relationships. As teams add new

services, refactor old ones, and spin up and shut down ephemeral

application instances, it becomes impossible to maintain a mental

map.

Context relies upon metadata and dimensions. Depending on your

system, business, or application, the spectrum of valuable data is

potentially enormous. For example, in the case of an e-commerce

application, helpful context includes, but isn’t limited to:

•	 Details about the team that owns the application, runbook,

and code repository

•	 Tags from Docker or the cloud provider where it’s deployed

•	 Its service type and function

•	 The regions where it has been deployed

•	 Its upstream and downstream dependencies

•	 Its deployment or change events

•	 Its alert status

•	 Any trace or log data associated with the transactions it

performs

•	 Additional business data (e.g., cart value)

But system components, their connections, and relationships are

only one part of essential context for full-stack observability. Con-

text is nothing without useful visualizations.

“CONTEXT IS
NOTHING
WITHOUT USEFUL
VISUALIZATIONS.”

What Full-Stack Observability Requires Today

19

Chapter 5

Easier,
Faster, More
Customizable
Exploration

Curation of data visualizations is a powerful way to surface data

from connected and well-defined system components. We already

know how best to represent a Java application process running in a

container, or an AWS Lambda function that calls DynamoDB after

a call from SQS, or a Kubernetes cluster running a dynamic deploy-

ment—we’ve solved these problems. And for a busy SRE or DevOps

engineer, modeling those environments in a set of dashboards

is a waste of valuable time. Manually creating visualizations and

dashboards for specific and ubiquitous technology is toil, plain

and simple.

A full-stack observability platform must incorporate the best

practices from industry leaders and surface the most important

signals of health as well as provide interactive experiences that let

engineers troubleshoot problems quickly.

What Full-Stack Observability Requires Today

20

To efficiently traverse large, complex, distributed

systems and quickly understand and prioritize

any issue, you’ll need intuitive visualizations

that require zero configuration. In light of this,

innovative design is essential.

When a platform’s visualizations provide insight

without requiring configuration, organizations

are better prepared to break down silos and

enable teams to observe their entire system—at

a glance—and more quickly understand what’s

happening across their environment and resolve

issues faster.

In New Relic Lookout, important changes in infrastructure golden signals are surfaced via circle visualizations,

with color indicating severity and size conveying the scale of recent changes.

What Full-Stack Observability Requires Today

21

Dashboards are great tools, but they often pro-

vide passive data. A full-stack observability

platform should provide intuitive, real-time visu-

alizations that drive your attention to where it’s

needed most and convey the severity and scale

of recent changes across all your telemetry data.

This allows you to discover unknown relation-

ships and blind spots. And these views should

be customizable, so you can easily explore large

systems, from the “golden signals” of through-

put, response time, and errors to changes in any

signal in your telemetry data that is important

to you.

These visuals—as jumping-off points—show

you where changes are occurring and what may

be contributing to those changes. You’ll imme-

diately see how issues across the system are

related as well as any commonalities that exist.

Saved views give your teams added efficiency

and collaboration when troubleshooting.
New Relic Lookout additional analysis highlighting deployments, warnings, and critical violations, and any

correlations.

What Full-Stack Observability Requires Today

22

A platform that intuitively displays the entire

landscape on a single screen allows teams to

quickly explore the health of their environment

at a glance, with point-and-click filtering and

grouping for all system components based on

types, tags, or critical performance data. This

helps you understand what has changed and

why, so that issues can be resolved long before

they impact the customer.

Easily see and explore the health of the entire estate in a highly dense honeycomb view with traffic light colors

based on alerts. (Example shows “dark mode” view.)

What Full-Stack Observability Requires Today

23

Curation through context—closing the skills gap
Curation through context also helps close the skills gap in a com-

plex digital enterprise. It provides a way for everyone in the orga-

nization to visualize the flows and dependencies in their complex

systems and to see everything that’s relevant to the entire envi-

ronment. Because this curation models a variety of systems well,

it makes understanding more accessible for people, even when

they are not familiar with that specific technology or code.

In other words, you need quick views that anyone in your organi-

zation can use to:

•	 Understand, with rich context, the relationships between your

technology, business, and customers.

•	 Make data-driven decisions that have the biggest direct impact

on specific KPIs.

When these views effectively model the technical environment

automatically, curated visualizations make it easier for everyone

to find root causes. And applying intelligence to large datasets

surfaces connections in the data, allowing people to do what

they are best at: making nuanced decisions about what to do in a

tough situation.

“CURATION
THROUGH
CONTEXT HELPS
CLOSE THE
SKILLS GAP IN
A COMPLEX
DIGITAL
ENTERPRISE.”

Ultimately, what you should see when you awake after being

paged at 3 a.m. is an interface so intuitive and modern that it

can serve as every IT, engineering, and SRE team’s daily real-time

interface for understanding what’s happening across your entire

environment.

What Full-Stack Observability Requires Today

24

Chapter 6

The Benefits
of Full-Stack
Observability

As software innovation progresses, the world will continue to

move faster and get more complex. Just as the latest technologies

and tech trends couldn’t have been anticipated just a few years

ago, we don’t know what the next big things to come will be. What

we do know is that this continuous innovation and complexity will

keep ramping up the expectations on your teams to move faster,

embrace more technologies, and deliver zero errors at lightning

speed. You’ll also have to automate more and keep pace with

customer expectations that have been set by other companies—

including your competitors—delivering cutting-edge customer

experiences.

What Full-Stack Observability Requires Today

25

Given these challenges, you need a full-stack observability plat-

form that reduces complexity and risk, and that does so with low

overhead. You need a platform that closes the skills gap by being

easy to use, understand, and traverse to gather essential context,

so it’s not a barrier to use for any team within an organization. You

need one platform that allows your teams to see all of their telem-

etry and business data in one place, get the context they need to

quickly derive meaning and take the right action, and work with

the data in ways that are meaningful to you and your business.

FULL-STACK
OBSERVABILITY
WILL HELP YOU:

•	 Reduce mean-time-to-resolution (MTTR)

•	 Detect and diagnose issues

•	 Perform chaos engineering and load testing across

your systems

•	 Give your developers more time for innovation

What Full-Stack Observability Requires Today

26

faster innovation, speedier deploys, less toil, reduced
costs, and better understanding of how to prioritize
your finite time and attention. Developers should be

able to innovate and chaos test with confidence, knowing

that the changes they’re making won’t break the system.

These are the benefits of full-stack observability.

WHEN YOU
HAVE FULL-
STACK
OBSERVABILITY,
THE BENEFITS
TO YOUR
BUSINESS ARE
PROFOUND:

All of this leads to a much deeper, shared understanding of your

data, your systems, and your customers. All of which will improve

your culture, and lead to business growth as you gain real-time

views into how your digital systems perform and how your cus-

tomers engage with your software, which lets you focus on what

matters most—the business outcomes you are tasked to deliver

every day.

To learn about how New Relic provides these essential components of
full-stack observability, visit newrelic.com/platform/explorer.

©2008-21 New Relic, Inc. All rights reserved. 02.2021

https://newrelic.com/platform/explorer

	Introduction
	Architectures Require a New Approach to Observability
	The Core Elements of Full-Stack Observability
	A Single (Open) Source of Truth
	Connected Context
	Easier, Faster, More Customizable Exploration
	The Benefits of Full-Stack Observability

