
Site Reliability
Engineering
Philosophies, habits, and tools for SRE success

Site Reliability Engineering

02

Site Reliability Engineering

Table of Contents
Introduction 01

Chapter 1: SRE Philosophy and Principles 04

Chapter 2: What Makes an SRE Successful? 10

Chapter 3: SRE Tools and Processes 18

Chapter 4: The Evolving SRE Role at New Relic 23

Execution 29

Site Reliability Engineering

Introduction

The day-to-day responsibilities of developers and operations

engineers are increasingly evolving as high-growth companies

look for new ways of improving stability, reliability, and auto-

mation-first practices. Because of the need to reduce downtime

(with less manual intervention) as systems scale, many organiza-

tions are adopting the site reliability engineer (SRE) role.

The phrase “site reliability engineering” is credited to Benjamin

Treynor Sloss, vice president of engineering at Google. Sloss joined

Google in 2003 and was tasked with building a team to help ensure

the health of Google’s production systems at scale. According to

Sloss, site reliability engineering is “what happens when you ask a

software engineer to design an operations function.” Site reliabil-

ity engineering is a cross-functional role, assuming responsibili-

ties traditionally siloed off to development, operations, and other

IT groups.

Site Reliability Engineering

02

Sloss’s team wrote the original book on site reliability engineering,

so if you’re wondering what a great modern SRE practice should

look like in a DevOps world, the Google Site Reliability Engineer-

ing book is a fantastic point of reference.

In it, Sloss writes, “It is a truth universally acknowledged that sys-

tems do not run themselves. How, then, should a system—par-

ticularly a complex computing system that operates at a large

scale—be run?”

Google’s answer has been to hire software engineers to do the

work usually handled in traditional organizations by IT operations

teams. “Our site reliability engineering teams focus on hiring

software engineers to run our products and to create systems to

accomplish the work that would otherwise be performed, often

manually, by sysadmins,” explains Sloss.

https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/
https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/

Site Reliability Engineering

03

From Google to the rest of the world

After the book was first published, the role was rapidly adopted in

a wide range of companies, prompting technology news and anal-

ysis site TechCrunch to wonder, back in 2016, “Are site reliability

engineers the next data sci-

entists?” The following year,

LinkedIn named SRE “one of

the most promising jobs” in

tech. Speaking in 2018, Beth

Long, a software engineer at

Jeli, told us, “My impression

is that there’s a slow trick-

le-down to smaller compa-

nies. Google, and Netflix,

and Amazon, and Heroku—

these companies have had SREs for a long time, because they

have the resources and the scale that demand it. You’re starting

to see that role appear in smaller companies where they realize

‘Oh, we need someone to play this role.’”

Three years on, this remains true. As more organizations are

building distributed microservice-style systems that run at scale,

the demand for SREs remains higher than ever.

Starting your SRE journey

It is important to note that the SRE role will vary considerably

from one organization to another. While job descriptions and day-

to-day tasks for SREs vary, the role’s utility is quickly becoming

apparent to those software

organizations that have

adopted it. So, where does

that leave you?

Whether you’re still figuring

out how to create a site reli-

ability practice at your com-

pany or trying to improve

the processes and habits of

an existing SRE team, the

more you know about the subject, the better—especially since

what works for a massive company such as Google might not

work for a small or midsize outfit. To that end, this ebook shares

the philosophies, habits, and tools of successful SREs, along with

New Relic’s definition, guidelines, and expectations for the role.

The demand for
SREs remains

higher than ever.

https://techcrunch.com/2016/03/02/are-site-reliability-engineers-the-next-data-scientists/
https://techcrunch.com/2016/03/02/are-site-reliability-engineers-the-next-data-scientists/
https://techcrunch.com/2016/03/02/are-site-reliability-engineers-the-next-data-scientists/
https://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017
https://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017
https://blog.linkedin.com/2017/january/20/linkedin-data-reveals-the-most-promising-jobs-of-2017
https://www.jeli.io

Site Reliability Engineering

04

Google defines an SRE as an operationally minded software engi-

neer, but what does that mean? At Google, SRE teams are respon-

sible for both capacity planning and provisioning. The teams are

different from purely operational teams in that they seek soft-

ware engineering solutions to problems. To enforce this, Google

caps the amount of time SREs spend on purely operational work

at 50%. This means that, at a minimum, 50% of a Google SRE’s

time should be allocated to engineering tasks, such as automa-

tion and improvements to the service.

The goals, risks, and trade-offs of
Site Reliability Engineering

When first thinking about an SRE team’s role, you might assume

that increasing reliability, generally measured by monitoring sys-

tem uptime, would be the primary goal, but beyond a certain

point that turns out not to be the case. This is because factors

outside of the SRE teams’ control come into play, such as network

reliability. There is also a trade-off between reliability and devel-

opment team velocity.

CHAPTER 1:
SRE Philosophy
and Principles

Site Reliability Engineering

05

Because of this, site reliability engineering will generally seek to

balance the risk of unavailability with the goal of rapid innovation

and efficient service operations. In the Google SRE book, Marc

Alvidrez writes, “We strive to make a service reliable enough, but

no more reliable than it needs to be. That is, when we set an avail-

ability target of 99.99%, we want to exceed it, but not by much:

that would waste opportunities to add features to the system,

clean up technical debt, or reduce its operational costs.”

One way to think about and manage this trade-off is to consider

the point in its life cycle at which a given product or service is.

For a relatively young product, setting a stringent goal for the

uptime of a service will likely be counterproductive, because it will

reduce the pace of innovation and experimentation in an unde-

sirable way. Conversely, as a product reaches maturity and has a

base of customers that depends on it, downtime becomes more

problematic and can potentially have a direct impact on the ser-

vice provider’s bottom line. At this point, increasing the target for

uptime makes sense.

https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/

Site Reliability Engineering

06

Golden Signals

While measuring service availability is a good starting point, particularly for user-facing

services, SRE teams will typically have several other business-oriented key metrics that

they also track. These metrics, which often include the four Golden Signals, are best

thought of as defining what it means for a given system to be “healthy.”

Different types of applications will have distinct metrics. For example, user-facing ser-

vices might care about availability, latency, and throughput, while big data systems tend

to focus on throughput and end-to-end latency. It is worth noting that the measurement

isn't an end in and of itself. What is important is how it indicates the quality of user expe-

rience and system effectiveness.

https://medium.com/faun/how-to-monitor-the-sre-golden-signals-1391cadc7524

Site Reliability Engineering

07

Using SLOs and SLIs to measure reliability

Service level objectives (SLOs) are a common way to measure a service provider’s perfor-

mance and can be equally important to site reliability engineering success. Clearly defined

and measured SLO metrics at the product and service level help organizations to:

• Tune investment and overall prioritization to meet reliability goals and meaningfully

adjust those high-level reliability goals to fit company strategy

• Maintain and build customers’ confidence

• Enable teams to decide when and how to focus efforts on reliability

• Allow engineers to make better assumptions about risk tolerance and how fast they

can go, and reason better about dependencies and reduce unnecessary toil

As an example, Stephen Weber, a Senior SRE at New Relic, told us that the New Relic core

data platform has three key metrics: The first is correctness (Were the correct results

returned?), and the second is latency (Did it respond in an acceptable amount of time?).

“And then the third is, to ensure that they are getting good latency, a safety valve technique

to stop processing and provide partial results (also known as graceful degradation). And

so they have a third SLI of keeping that to a minimum.” The three metrics together form

this SLO for the core data platform.

If teams consistently exceed their SLOs (for example, 99.9% availability for all services),

they may be able to move faster, take on more risk, and deliver more features. If a team

https://newrelic.com/platform/telemetry-data-platform
https://newrelic.com/platform/telemetry-data-platform

Site Reliability Engineering

08

is in danger or isn’t meeting its SLOs, it’s a signal to back off and

pause to focus on reliability so that the team can start moving

faster again.

SRE teams may also have other service level indicators (SLIs) that

they use to measure reliability that are not necessarily part of

their SLO. These performance metrics track some facet of the

business; for example, an SLI for a database service could be

something like, “The fraction of user queries that are successfully

completed within 200 milliseconds without error.”

To measure reliability, teams turn to metrics like mean time

between failures (MTBF), mean time to detect (MTTD), and mean

time to resolution (MTTR), all of which help organizations define

their “risk matrices.” These become powerful tools for prioritizing

issues and risks that will have a quantifiable impact on SLOs, and

they also allow organizations to downshift on issues that may not

be especially urgent.

The hallmark of a good SLI/SLO is the metric’s relevance to the

business outcomes, often the user experience. For example, a

high error rate or slow response time has a negative impact on

the user experience. High CPU utilization might have a negative

impact on the user experience, but the relationship between high

CPU and a bad user experience is harder to establish.

The hallmark of a good SLI/SLO is the
metric’s relevance to the business
outcomes, often the user experience.

Site Reliability Engineering

09

Error budgets

Finally, although perhaps not essential, it can be helpful to define

a quarterly error budget based on a service’s SLO. The error bud-

get provides a clear, objective metric that determines how unreli-

able the service is allowed to be within a single quarter.

Teams can have burn-down charts that show how quickly they

are going through their error budget, and adjust work accordingly.

Interestingly, at Google, if a service is providing 100% uptime,

they will take the service down so dependent services are forced

to know how to react.

Of course, if the error budget is too tight, it can slow the pace

of development. Having an error budget in place allows you to

reason about this and make a decision to perhaps relax it in order

to be able to increase development team velocity. In that situa-

tion, the product and SLA engineers might decide to increase the

allowable error count to enable faster development. Some orga-

nizations sort their apps into “high reliability” and “high velocity”

and set stricter/looser error budgets accordingly.

Whatever the setting, an error budget is important because it

aligns incentives and emphasizes joint ownership between soft-

ware engineering and product development.

Site Reliability Engineering

 When choosing an SRE, a candidate’s technical contributions will

depend on how a particular organization defines or approaches

the role: One company might require more software engineer-

ing and coding experience, whereas another organization might

place a higher value on operations or QA skills. Whatever the bal-

ance, what sets the “great” apart from the “good enough” is often

a combination of habits and traits that complement technical

expertise.

CHAPTER 2:
What Makes an
SRE Successful?

Site Reliability Engineering

11

Here’s how you’ll know you’ve found a fantastic SRE.

SREs see the (much) bigger picture

Successful software developers understand how their code helps

drive the overall business, and great SREs have their own version

of this trait. “You’re looking for someone who is thinking about

the bigger picture outside of the day-to-day,” said Jason Qual-

man, a Senior Software Engineer at New Relic. “A successful SRE

is someone who can understand and interpret things at a higher

level.” Changes can create risks or impacts down the road, not

just in that current moment, and a good SRE is sure to perform a

thorough analysis before making any changes.

The ability to consider how their work will affect the rest of a

particular system, team, or the larger infrastructure is the kind

of extreme pragmatism that SREs need. There’s little long-term

upside in a siloed approach that throws a change over the wall

with no concern for how it might affect the person sitting on the

other side.

“We are making decisions very low in the stack,” Qualman said of

the SRE. Those decisions will affect people much further up the

stack. Good decisions enable seamless transitions.

see bigger
picture

curious
& empathetic

Site Reliability Engineering

12

SREs are curious and empathetic

Kat Dober and Stephen Weber, both Senior SREs at New Relic, cite curiosity as a key trait

they look for in an SRE.

“You’re looking for people who have that engineering mind-set,” according to Dober. “You

want to know how it works. You want to know the ways that it might fail. You want to be

thinking about those from the beginning.”

Weber agrees: “Oftentimes, the improvements that have been most beneficial started

with ‘Oh, that’s funny.’ And then you keep digging into that.”

A related trait is customer empathy, according to Weber. “Maybe your page-load average is

pretty good, but if some subset of customers are experiencing really long load times, you

need to see that bad experience,” said Weber.

Site Reliability Engineering

13

SREs automate at every opportunity

While there will always be some manual exploration involved in

the role, SREs look to reduce work “toil.” Toil has a specific mean-

ing at Google, given by Vivek Rau in the SRE book as “the kind of

work tied to running a production service that tends to be manual,

repetitive, automatable, tactical, devoid of enduring value, and

that scales linearly as a service grows.”

In a follow-up article to his chapter published via Google Research,

Rau et al provide a case study for reducing toil for the SRE team

supporting Google’s Bigtable service. “Bigtable SRE was able to

create a snowball of work reduction: each incremental reduc-

tion of toil created more engineering time to work on future toil

reduction…. by 2014, the team was in a much-improved place

operationally—they reduced user requests from a peak of more

than 2200 requests per quarter in early 2013 to fewer than 400

requests per quarter.”

The key to achieving this was to gradually increase the amount of

automation for the various common types of support requests.

The more general lesson is that SREs will typically focus on auto-

mation as a key technique for reducing painful manual tasks and

toil.

“Automation really comes in once you understand your problem

space or once you understand your infrastructure, and there are

things that you know are going to have to be done continually,”

Dober said. “For example, think about how you’re going to config-

ure all your hosts, or how you’re going to get a piece of code from

the repo that it’s in, packaged up into an artifact or container,

and deployed across your infrastructure. Automating those tasks

reduces toil but it also makes sure the tasks get done consistently

and correctly every time.”

automate every
opportunity

https://research.google/pubs/pub45765/

Site Reliability Engineering

14

Qualman agrees. “A lot of this role is thinking about inefficient

and time-consuming things people are doing and putting a stop

to them as soon as possible,” he said. “Instead of kicking a can

down the road on manual work, you’re saying, ‘I’m going to take

the time to automate this right now and stop anyone else from

having to do this painful thing.’”

This obsessive focus on automation is a key tenet of SRE—and

DevOps—philosophy; in fact, ”The DevOps Handbook” has a

chapter that discusses the counterintuitive effects of manual

acceptance processes. And “automation” and its variants seem to

appear more often than any other word in SRE job descriptions.

It’s not that unexpected to see “Automate, automate, automate,

and then…automate!” as a key responsibility in an SRE job listing.

This obsessive
focus on
automation
is a key tenet
of SRE—and
DevOps—
philosophy.

https://itrevolution.com/the-devops-handbook/

change agents

Site Reliability Engineering

SREs are change agents

The confidence to advocate for SRE initiatives is another skill that distinguishes the best

SREs. Part of the job, simply put, involves convincing other people to do things they initially

might not want to do; for example, convincing a software engineer focused on quickly

shipping a product feature to think about ways to scale that feature over the next several

years.

This is something that can be more easily accomplished if the SREs are directly embedded

in the product teams. Speaking at QCon Plus, Johnny Boursiquot, a Site Reliability Engi-

neer at Salesforce’s Heroku, talked about SRE adoption in a presentation called “The SRE

as a Diplomat,” during which he recommended the practice of embedding SREs in existing

product teams as a way of driving change. “No two organizations implement the practices

of site reliability engineering the same way,” Boursiquot observed, “a fact that is seldom

recognized when rolling out an SRE function for the first time.”

Expanding on this theme he said:

“While there exists a set of best practices for its adoption, those that take on the task of

championing SRE within their organization know that those prescriptive approaches do

not provide all the pieces necessary for that adoption to be a smooth and immediately

impactful one.

“Nowhere is this challenge of adoption more prevalent than in organizations where teams

have complete ownership of a service from its development to its ongoing operational

15

https://plus.qconferences.com/
https://www.linkedin.com/in/jboursiquot/
https://plus.qconferences.com/plus2020/keynote/sre-diplomat
https://plus.qconferences.com/plus2020/keynote/sre-diplomat

Site Reliability Engineering

16

needs. In these organizations, it is common, even necessary, for

team-specific practices to develop. This total ownership model

works well to move business objectives forward in the early part

of a system’s life cycle but

eventually and insidiously

morphs to become unad-

dressed technical debt when

maturing teams need to

adopt shared reliability prac-

tices and tooling.

“Bridging this gap between

the intent of leadership and

the practical implication

within teams requires change agents, in the form of SREs, to be

embedded within these teams. Teams that see themselves as

self-sufficient are not always incentivized to work with a traditional

and external SRE function requiring changes on how they operate,

even if those changes will markedly improve things. Regardless

of the reasons, building bridges across these teams requires that

we first establish trust. Of course, one way to facilitate this trust

building is to embed SRE

directly within those teams.”

In other words, great SREs

have to be effective sales-

people; they have to be

able to sell their colleagues

on processes and projects

that might appear to involve

some near-term pain or go

against legacy norms. “You

need to be able to dig in and say, ‘stop’ and ‘no,’ which can be

difficult to do in some engineering organizations,” according to

Beth Long.

Great SREs have
to be effective

salespeople.

Site Reliability Engineering

17

SREs embrace new tools and
approaches (when necessary)

Because site reliability engineering is still fairly new, many engi-

neers who currently hold the title worked in other jobs before

assuming the role. Some SREs might have a developer back-

ground, while others may come from traditional operations or

sysadmin backgrounds, so hiring managers are best served by

not pigeonholing the SRE role to one particular background. A

traditional QA engineer might have a good skill-set for the SRE

position, for example.

Hiring managers are best served by
not pigeonholing the SRE role to
one particular background.

new tools
& approaches

No matter your background, the SRE role requires you to be prag-

matic and willing to adapt. It challenges you to move out of your

comfort zone and develop new skills. “I interact with many differ-

ent systems, different programming languages, different styles of

YAML that I never really thought I would ever do, versus when I

was a developer,” said Weber. “Writing five different programming

languages in a day is not necessarily unusual, so you just need to

be willing to be flexible and jump in.”

Site Reliability Engineering

CHAPTER 3:

SRE Tools and
Processes

For an SRE, part of being pragmatic means being willing to dump

processes, procedures, and tools that may have been well-inten-

tioned but are no longer productive.

Just as there’s no universal job description for SREs, there’s no

standard toolset for the role either. However, great SREs always

seek to optimize reliability tools and processes and evangelize

them throughout the organization.

It makes absolute sense—optimization is key to a successful SRE

practice and for proper implementation of DevOps principles.

But what tools should SREs standardize on? Each team needs to

decide what’s best for them. The good news is, there are plenty

of choices.

Site Reliability Engineering

19

Stages of the DevOps (and SRE) toolchain

If you created a “stages of the SRE” toolchain, it probably wouldn’t surprise you if it looked

a lot like the DevOps toolchain (Fig.1).

The increasing use of the public cloud and the corresponding rise in the use of Infrastruc-

ture as code tooling means that this is an area that sees particularly rapid change and

churn. We can, however, outline some of the current widely used tools and practices.

Fig 1: The DevOps toolchain

CONTINUOUS

BUILD

FEEDBACK
CONTIN

UOUS IN
TEGRATIO

N &
 D

ELIV
ERY

PLA
N

OPERATE

DEPLOY

REAL-TIM
E CO

M
M

U
N

ICATIO
N

RE
AL

-T
IM

E
CO

M
M

U
N

IC
AT

IO
N

Site Reliability Engineering

20

PLAN:

This comprises both agile project man-

agement and tracking tools such as Avaza,

Jira, YouTrack, Trello, Pivotal Tracker, or

other task management tools.

BUILD:

Here you’ll find infrastructure as code

tools, such as Ansible, Chef, Docker, Pup-

pet, and Terraform, which make re-pro-

visioning environments faster, more

consistent, and more reliable. Contain-

ers and orchestrators, such as Kuberne-

tes and Docker, also play a role, allowing

developers and SREs to work against dis-

posable, virtual replicas of production.

Source control and collaborative coding

tools such as Bitbucket, GitHub, and Git-

Lab as well as IDEs, such as IntelliJ IDEA

and Visual Studio Code, are also widely

used.

CONTINUOUS INTEGRATION
AND DELIVERY:

It is increasingly common for developers

to check code into a shared repository

several times a day, running it through a

suite of automated tests, and then auto-

matically releasing the updated code to

production if the test suite passes. The

approach combines CI/CD tools such as

AWS CodePipelines, Bitbucket pipelines,

CircleCI, and Jenkins with testing tools

such as JUnit, Mabl, Sauce Labs, and

Selenium. A critical point regarding con-

tinuous delivery is that while teams have

software that is ready to deploy, they

don’t necessarily deploy it immediately.

(See Deployment below.)

pl
an

bu
ild

in
te

gr
at

io
n

&
de

liv
er

https://www.avaza.com
https://www.atlassian.com/software/jira
https://www.jetbrains.com/youtrack/
https://trello.com/en
https://www.pivotaltracker.com/
https://www.ansible.com
https://www.chef.io
https://www.docker.com
https://puppet.com
https://puppet.com
https://www.terraform.io
https://kubernetes.io
https://kubernetes.io
https://www.docker.com
https://bitbucket.org/product
https://github.com
https://about.gitlab.com
https://about.gitlab.com
https://www.jetbrains.com/idea/
https://code.visualstudio.com/
https://aws.amazon.com/codepipeline/
https://support.atlassian.com/bitbucket-cloud/docs/publish-and-link-your-build-artifacts/
https://circleci.com
https://www.jenkins.io
https://junit.org/junit4/
https://www.mabl.com
https://saucelabs.com
https://www.selenium.dev

Site Reliability Engineering

21

op
er

at
e

de
pl

oy

co
nt

in
uo

us

fe
ed

ba
ck

Many New Relic customers also build

pipeline dashboards to help track this

stage of the process:

OPERATE:

This typically involves monitoring tools,

such as New Relic, alongside incident,

change, and problem tracking tools,

such as Jira Service Desk and Status-

page, PagerDuty, or Zendesk. At New

Relic, our SREs and engineers use the log

management capabilities and custom

instrumentation.

AIOps tools, such as New Relic’s Applied

Intelligence, can proactively monitor

your services for anomalies and notify

you with real-time failure warnings and

actionable details so you can investigate

faster. Incidents can be delivered directly

into tools such as PagerDuty.

DEPLOY:

Deployment is a separate step if you are

doing continuous integration and deliv-

ery but not yet continuous deployment.

You use the same tools as the continu-

ous integration step above, but the key

difference is whether the default is to

deploy the code as soon as it is ready.

There are business reasons for not doing

continuous deployment, but creating fre-

quent, small, incremental updates that

ship automatically is an SRE best practice.

CONTINUOUS FEEDBACK:

Covering both the culture and processes

for collecting regular customer feedback,

aided by tools such as GetFeedback,

Slack, and Pendo. The feedback part of

the loop also includes metrics on perfor-

mance and processes, so for example,

Jira tickets for DRI (Don't Repeat Inci-

dents) work. A release dashboard is also

an example of continuous feedback.

https://newrelic.com/
https://www.atlassian.com/software/jira/service-desk
https://www.atlassian.com/software/statuspage
https://www.atlassian.com/software/statuspage
https://www.pagerduty.com
https://www.zendesk.co.uk
https://newrelic.com/products/logs
https://newrelic.com/products/logs
https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://newrelic.com/platform/applied-intelligence
https://newrelic.com/platform/applied-intelligence
https://www.getfeedback.com
https://slack.com/intl/en-gb/
https://www.pendo.io

Site Reliability Engineering

22

Nothing is written in stone

The tools SREs use at any given time will depend on where an

organization is on its SRE journey, and the shift we’ve seen to the

public cloud has also changed the role considerably. New trends,

including the ability to automate through AIOps tooling, will con-

tinue to redefine the role.

While less mature organizations will tend to use more specialized

operations tools, more mature organizations will see more con-

vergence between SRE and software engineering toolchains. So,

while it’s certain that there’s no one-size-fits-all set of tools, SREs

should experiment with and adopt the right tools as they seek

new, more efficient ways to bring greater reliability to everything

they do.

The ability
to automate
through AIOps
tooling will
continue to
redefine
the role.

Site Reliability Engineering

Google’s Site Reliability Engineering book does a great job of out-

lining what a great modern SRE practice can look like in a DevOps

world. But what about SRE practices at companies that aren’t as

large as Google? For all that’s been written about reliability prac-

tices, it’s surprisingly hard to find specific, detailed descriptions

of the day-to-day role that SREs play in other engineering organi-

zations. Most descriptions on the internet contain rather vague

phrases like, “SREs combine software engineering and opera-

tional skill sets” and “SREs automate all the things.”

Defining the role

Creating the New Relic SRE description took time and involved

input from individual SREs and executive leadership.

SREs at New Relic are engineers who focus on, and are recognized

primarily for, improving the reliability of our systems. From a

business perspective, the goal of the work that SREs do is to build

and maintain customers’ trust, and allow the business to scale

by steadily decreasing the per-service and per-host operational

overhead of New Relic’s platform.

CHAPTER 4:

The
Evolving
SRE Role at
New Relic

https://landing.google.com/sre/book.html

Site Reliability Engineering

24

At a high level, SREs make this happen by:

• Championing reliability best practices

• Guiding designs and processes with an eye toward resilience

and low toil

• Reducing technical complexity and sprawl

• Driving the usage of tooling and common components

• Implementing software and tooling to improve resilience and

automate operations

Evolving the role

When New Relic first created its SRE function, it was based

around a centralized team, very much as described by Google,

but New Relic now has SREs permanently embedded into the

various product teams. This latter approach is similar to the one

that Boursiquot described earlier.

Gus Shaffer, a Senior Director of Engineering in the Telemetry

Data Platform group, which has a high concentration of embed-

ded SREs, told us that having a centralized function for reliability

worked against the DevOps goal of having one team responsible

for coding and release. “We found that there was an abdication

of responsibility for reliability, where people are like, ‘Oh, well,

there’s a reliability organization, they’re responsible for reliabil-

ity,’” Shaffer explained. “When, in fact, the reliability organization

was actually responsible for measuring and reporting and helping

people figure out what the trends are in their reliability, and put-

“We’re
building the
reliability
practices
into the tools
that people
are using.”
Stephen Weber, Senior SRE, New Relic

https://plus.qconferences.com/plus2020/keynote/sre-diplomat

Site Reliability Engineering

25

ting together processes and policies to help people do the right

thing.”

Weber echoed this view: “I think the biggest advantage of going

from that central team to embedding on the platform teams is

that we’re taking on the idea of building the reliability practices

into the tools that people are using.”

The new structure makes it easier for the New Relic SREs to stay

current with the overall product architecture. The structure

change also reduces the amount of auditing work and performing

the role of “bad-cop” that SREs are often required to do. More-

over, it made it easier for SREs to spend more time on develop-

ment—a different way of achieving the same goal that Google’s

50% cap aims for. In other words, changing the structure elimi-

nated several problems, effectively executing an Inverse Conway

Maneuver.

The change does come with its own set of challenges, however.

One is that the lack of a centralized SRE function makes it harder

to deal with cross-cutting concerns. For New Relic, an example

is Apache Kafka, which is used for all New Relic’s data pipelines.

Extensive use means that it is vitally important that the platform’s

various clients use it as efficiently as possible. To help ensure this,

New Relic is looking at introducing quotas and has spun up a pro-

duction engineering team with a rotating roster of engineering

staff. “We’ve brought in people from all these different teams so

that we have subject matter expertise in all the different systems

within the data platform,” Shaffer explained. “It means that we

have instant buy-in on making these changes, because people

that are on the teams that are being impacted are part of this

‘centralized’ SRE team.”

https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://kafka.apache.org/intro

Site Reliability Engineering

26

The SRE role at New Relic has also evolved in response to other

factors. New Relic is increasingly moving toward using public

cloud infrastructure rather than its own data centers. That shift

has resulted in a corresponding change in how New Relic’s teams

work with software-defined infrastructure.

The change to the public cloud also means that using cloud

resources efficiently has become an increasingly important part

of the role. “The SREs are not necessarily the ones who are watch-

ing the AWS bill,” Shaffer told us, “but they are responding to sig-

nals from leadership, like ‘This system seems really expensive,

more so than it probably should be, can you look into that?’ It is

also a part of the capacity management function that you don’t

over-provision.”

27

Site Reliability Engineering

What SREs do at New Relic

To summarize, the following table provides a high-level overview of the current SRE role at New Relic.

TYPE OF WORK EXAMPLES NOTES

Learn and enhance New Relic oper-

ational and reliability best prac-

tices, (e.g., capacity planning, SLOs,

incident response), and work with

teams to adopt those practices.

• Update your team’s risk matrices.

• Manage capacity in advance of customer

demand.

• Think about costs and the way we use cloud

resources effectively.

• Influence the team to prioritize the most

important reliability work.

• This is a particular focus for new

SREs and SREs working with new

teams.

• All SREs stay current on platform

tooling and SRE community best

practices.

Build or help teams adopt core

shared internal components.

• Work with teams to migrate systems into a new

version of our shared deployment pipeline.

• Contribute code or tools to our container

runtime platform.

• Limit technical sprawl by guiding teams to select

appropriate existing tools rather than building

new ones.

• SREs are expected to use existing

tools rather than introducing new

tools or systems.

Improve the monitoring and observ-

ability of the New Relic platform.

• Work with teams to clean up noisy unused alerts

and ensure that important problems are alerted

on.

• Build integrations to create new visibility into our

platform.

• SREs actively use and extend

existing New Relic products

whenever it’s possible and effective

to do so and to influence product

management to implement

necessary features when it’s not.

Site Reliability Engineering

28

Set up your SREs for success

Although this SRE role description and approach works well at

New Relic, it may not be right for other organizations. Regardless,

it provides a useful example and helps clarify the tremendous

value a great SRE practice can bring. By developing your own

guidelines, you can set up SREs for success and advance the col-

lective understanding of the vital role the SRE practice will play as

it matures to support the ever-increasing complexity of comput-

ing platforms.

Finally, it’s critical to create a community of practice and mentor/

mentee relationships for SREs and others who care deeply about

reliability and sharing best practices—that’s what creates a cul-

ture of reliability.

Site Reliability Engineering

Once you define the SRE role and have the right organizational

structure and incentives in place, it all comes down to execution.

A successful SRE team depends on a variety of skills and traits.

You can always teach technical skills, but you can’t necessarily

impart equally essential qualities such as empathy and curiosity.

Some engineering cultures, such as New Relic’s, prize autonomy—

but that doesn’t mean teams should have to tackle reliability

independently. Teams (and individual SREs) need organizational

support, communication, and, above all, trust to thrive.

A guiding philosophy for successful SREs might be expressed this

way: Don’t chase a holy grail—you can’t prevent things from ever

breaking. Instead, work tirelessly to see the big picture, incorpo-

rate automation, encourage healthy patterns, learn new skills and

tools, and improve reliability in everything that you do. Perfection

may be unattainable, but continually striving to do things better is

the way to get as close as possible.

Successful DevOps starts here. Measure what matters and
innovate faster. Sign up for a free account.

Execution

https://newrelic.com/signup?utm_campaign=fy22-q1-devop-amer-ebook-asset-none-dvps_pdf&utm_medium=asset&utm_source=ebook&utm_content=dvps_pdf&fiscal_year=fy22&quarter=q1&program=devop&ad_type=none&geo=amer

	Introduction
	Chapter 1: SRE Philosophy and Principles
	Chapter 2: What Makes an SRE Successful?
	Chapter 3: SRE Tools and Processes
	Chapter 4: The Evolving SRE Role at New Relic
	Execution

