
A Quick
Introduction
to Distributed
Tracing
Gain Visibility and Reduce
MTTR in Complex Application
Environments

Table of Contents
Introduction: Cutting Through the Complexity 03

What Is Distributed Tracing? 05

Why Does Your Business Need Distributed Tracing? 08

How Does Distributed Tracing Work? 10

When Do You Use Distributed Tracing? 12

Why Is Sampling Important to Understand? 13

A Mini-Glossary of Distributed Tracing Terms 14

What’s Next? 15

03New Relic: A Quick Introduction to Distributed Tracing

Introduction: Cutting Through the Complexity
Modern software development drives innovation for
companies of all sizes and shapes, enabling them to
deliver differentiated customer experiences, accel-
erate time to market, and gain the agility needed to
meet their target outcomes. However, the downside
of modern environments and architectures is com-
plexity, making it more difficult to quickly diagnose
and resolve performance issues and errors that
impact customer experience.

The answer is observability, which cuts through software complex-
ity with end-to-end visibility that enables teams to solve problems
faster, work smarter, and create better digital experiences for their
customers. Observability creates context and actionable insight
by, among other things, combining four essential types of observ-
ability data: metrics, events, logs, and traces.

Traces—more precisely, distributed traces—are essential for soft-
ware teams considering a move to (or already transitioning to)
the cloud and adopting microservices. That’s because distributed
tracing is the best way to quickly understand what happens to
requests as they transit through the microservices that make up
your distributed applications.

Whether you’re a business leader, DevOps engineer, product owner,
site reliability engineer, software team leader, or other stakeholder,
you can use this ebook to get a quick introduction into what dis-
tributed tracing is all about, how it works, and when your teams
should be using it.

?
?

04New Relic: A Quick Introduction to Distributed Tracing

The shift to modern software development

Waterfall development
with infrequent releases

Agile development with
continuous deployment

On-premises Cloud computing

Monitoring application performance Observing end-to-end software
and systems performance

Monolithic applications Distributed, microservices architectures

Reacting to performance issues Working to prevent performance issues

Siloed teams Cross-functional teams and DevOps

05New Relic: A Quick Introduction to Distributed Tracing

What Is Distributed Tracing?
Distributed tracing is now table stakes for operating and monitoring modern
application environments. But what is it exactly?

Distributed tracing is the capability for a tracing solution to track and observe
service requests as they flow through distributed systems by collecting data as
the requests go from one service to another. The trace data helps you under-
stand the flow of requests through your microservices environment and pinpoint
where failures or performance issues are occurring in the system—and why.

For instance, a request might pass through multiple services and traverse back
and forth through various microservices to reach completion. The microservices or
functions could be located in multiple containers, serverless environments, virtual
machines, different cloud providers, on-premises, or any combination of these.

06New Relic: A Quick Introduction to Distributed Tracing

Connecting the dots
Combining traces with the other three essential types of telemetry data—metrics, events,
and logs (which together with traces create the acronym MELT)—gives you a complete pic-
ture of your software environment and performance for end-to-end observability. You can
learn more about the different types of telemetry data in “MELT 101: An introduction to the
four essential telemetry data types.”

A distributed trace has a tree-like structure, with “child” spans that refer to one “parent” span. This diagram shows

some important span relationships in a trace.

This diagram shows how spans in a different trace relate to one another.

https://newrelic.com/platform/telemetry-data-101/
https://newrelic.com/platform/telemetry-data-101/

07New Relic: A Quick Introduction to Distributed Tracing

A brief history of
distributed tracing
As companies began moving to distrib-
uted applications, they quickly realized
they needed a way to have not only visibil-
ity into individual microservices in isolation
but also the entire request flow.

Hence, distributed tracing became a best
practice for gaining needed visibility into
what was happening. However, software
teams discovered that instrumenting
systems for tracing then collecting and
visualizing the data was labor-intensive
and complex to implement. The time and
resources spent building code to make dis-
tributed tracing work was taking time away
from the development of new features.

Then two things happened: First, solutions
such as New Relic began offering capa-
bilities that enable companies to quickly
and easily instrument applications for
tracing, collect tracing data, and analyze
and visualize the data with minimal effort.
Second, open standards for instrument-
ing applications and sharing data began
to be established, enabling interoperabil-
ity among different instrumentation and
observability tools.

A quick guide to distributed
tracing terminology

• A request is how applications, microservices, and
functions talk to one another.

• A trace is performance data about requests as they flow
through microservices.

• A span represents operations or segments that are part
of a trace.

• A root span is the first span in a trace.

• A child span is a subsequent span, which can be nested.

08New Relic: A Quick Introduction to Distributed Tracing

Why Does Your Business
Need Distributed Tracing?
As new technologies and practices—
cloud, microservices, containers, server-
less functions, DevOps, site reliability
engineering (SRE), and more—increase
velocity and reduce the friction of getting
software from code to production, they
also introduce new challenges:

• More points of failure within the
application stack

• Increased mean time to resolution
(MTTR) due to the complexity of the
application environment

• Less time to innovate because more
time is needed to diagnose problems

For example, a slow-running request might
be impacting the experience of a set of
customers. That request is distributed
across multiple microservices and server-
less functions. Several different teams own
and monitor the various services that are
involved in the request, and none have
reported any performance issues with
their microservices. Without a way to view
the performance of the entire request
across the different services, it’s nearly
impossible to pinpoint where and why the
high latency is occurring and which team
should address the issue.

As part of an end-to-end observability
strategy, distributed tracing addresses
the challenges of modern application
environments. By deeply understanding

the performance of every service—both
upstream and downstream—your soft-
ware teams can more effectively and
quickly:

• Identify and resolve issues to minimize
the impact on the customer experi-
ence and business outcomes

• Measure overall system health and
understand the effect of changes on
the customer experience

• Prioritize high-value areas for
improvement to optimize digital
customer experiences

• Innovate continuously with confi-
dence to outperform the competition

Gaining visibility into a massive data pipeline

Fleet Complete is the fastest-growing telematics provider in the world, serv-
ing more than 500,000 subscribers and 35,000 businesses in 17 countries, while
experiencing tenfold growth in the past several years. It uses distributed tracing
and other telemetry data to gain full visibility into its data-ingestion pipeline,
which collects 1 billion data points every day.

New Relic gave us all the insights
we needed—both globally and

into the different pieces of our
distributed application. [As] we

move data across our distributed
system, New Relic enables us
to see where bottlenecks are

occurring as we call from service
to service.

— Muhamad Samji
Architect, Fleet Complete

09New Relic: A Quick Introduction to Distributed Tracing

https://newrelic.com/case-studies/Fleet-Complete

How Does Distributed Tracing Work?
Distributed tracing starts with instrumenting your environment to
enable data collection and correlation across the entire distrib-
uted system. After the data is collected, correlated, and analyzed,
you can visualize it to see service dependencies, performance,
and any anomalous events such as errors or unusual latency.

Instrumentation
Instrumenting your microservices environment means adding
code to services to monitor and track trace data. Solutions such as
New Relic make it easy to instrument your applications for almost
any programming language and framework. You can also use open
source tools and open instrumentation standards to instrument
your environment. OpenTelemetry, part of the Cloud Native Com-
puting Foundation (CNCF), is becoming the one standard for open
source instrumentation and telemetry collection. Projects such
as OpenCensus and Zipkin are also well established in the open
source community. Some service meshes, such as Istio, also emit
trace telemetry data.

New Relic is fully committed to supporting open standards for dis-
tributed tracing, so that your organization can ingest trace data
from any source, whether that’s open instrumentation or proprietary
agents. Learn more about New Relic’s support for OpenTelemetry,
OpenCensus, and Istio.

10New Relic: A Quick Introduction to Distributed Tracing

https://opentelemetry.io/
https://www.cncf.io/
https://www.cncf.io/
https://opencensus.io/
https://zipkin.io/
https://istio.io/
https://blog.newrelic.com/product-news/opentelemetry-beta-support-new-relic-one/
https://blog.newrelic.com/product-news/open-instrumentation/
https://blog.newrelic.com/product-news/how-to-monitor-istio-service-mesh/

Trace context
To make the trace identifiable across all the different components
in your applications and systems, distributed tracing requires
trace context. This means assigning a unique ID to each request,
assigning a unique ID to each step in a trace, encoding this con-
textual information, and passing (or propagating) the encoded
context from one service to the next as the request makes its way
through an application environment. This lets your distributed
tracing tool correlate each step of a trace, in the correct order,
along with other necessary information to monitor and track per-
formance.

W3C Trace Context is becoming the standard for propagating
trace context across process boundaries. It lets all tracers and
agents that conform to the standard participate in a trace, with
trace data propagated from the root service all the way to the ter-
minal service. New Relic supports the W3C Trace Context standard
for distributed tracing.

Metrics and metadata
A single trace typically captures data about:

• Spans (service name, operation name, duration, and other
metadata)

• Errors

• Duration of important operations within each service (such as
internal method calls and functions)

• Custom attributes

Analysis and visualization
Collecting trace data would be wasted if software teams didn’t
have an easy way to analyze and visualize the data across com-
plex architectures. A comprehensive observability platform allows
your teams to see all of their telemetry and business data in one
place. It also provides the context they need to quickly derive
meaning and take the right action, and work with the data in ways
that are meaningful to you and your business.

11New Relic: A Quick Introduction to Distributed Tracing

https://www.w3.org/TR/trace-context/

When Do You Use Distributed Tracing?
In general, distributed tracing is the best way for DevOps, oper-
ations, software, and site reliability engineers to get answers to
specific questions quickly in environments where the software
is distributed—primarily, microservices and/or serverless archi-
tectures. As soon as a handful of microservices are involved in
a request, it becomes essential to have a way to see how all the
different services are working together.

This means that you should use distributed tracing when you want
to get answers to questions such as:

• What is the health of the services that make up a distributed
system?

• What is the root cause of errors and defects within a distrib-
uted system?

• Where are performance bottlenecks that could impact the
customer experience?

• Which services have problematic or inefficient code that
should be prioritized for optimization?

12New Relic: A Quick Introduction to Distributed Tracing

13New Relic: A Quick Introduction to Distributed Tracing

Why Is Sampling Important to Understand?
As you can imagine, the volume of trace data can grow exponentially over time as the volume of requests increases and as more microser-
vices are deployed within the environment. To manage the complexity and cost associated with transmitting and storing vast amounts of
trace data, organizations can store representative samples of the data for analysis instead of saving all the data.

There are two approaches to sampling distributed traces:

Sampling Type Head-based sampling makes the decision to collect and
store trace data randomly while the root (first) span is
being processed.

Tail-based sampling makes the decision to sample the request
when it has completed and all information about that trace has
been collected.

Advantages
& Use Cases

• Works well for applications with lower throughput
• Fast and simple to get up and running
• Works well with a blend of monoliths and microservices
• Little-to-no impact on application performance
• Low-cost solution for sending trace data to third-party

vendors
• Random sampling can give sufficient visibility for some

systems

• Works well for highly distributed, high-volume app environments
• Captures and analyzes 100% of traces across a distributed system
• Observes every span within a request and then decides which

traces are most useful to save
• Visualizes the most actionable data with errors, unusual latency,

and anomalies
• Lets you ask deeper system questions

Considerations • Traces are sampled randomly
• The sampling decision is made before traces have fully

completed
• Traces with errors or unusual latency might be sam-

pled out and missed

• Usually offered in on-premises distributed tracing solutions,
which burdens you with deploying, managing, and scaling com-
plex software

• Requires operational effort of planning for usage spikes, resiliency,
cost, and scale for on-premises solutions

• Results in additional costs for transmitting and storing vast
amounts of data for on-premises solutions

14New Relic: A Quick Introduction to Distributed Tracing

A Mini-Glossary of Distributed Tracing Terms
Child span: Subsequent spans after the
root span. Child spans can be nested.

Head-based sampling: Where the deci-
sion to collect and store trace data is
made randomly while the root (first) span
is being processed.

Observability: In control theory, observ-
ability is a measure of how well internal
states of a system can be inferred from
knowledge of its external outputs. Observ-
ability involves gathering, visualizing, and
analyzing metrics, events, logs, and traces
(MELT) to gain a holistic understanding of
a system’s operation. Observability lets

you understand why something is wrong,
compared with monitoring, which simply
tells you when something is wrong.

Request: How applications, microservices,
and functions talk to one another.

Root span: The first span in a trace.

Sampling: Storing representative sam-
ples of tracing data for analysis instead
of saving all the data.

Span: The primary building block of a
distributed trace, a span represents a
call within a request, either to a separate

microservice or function. It’s a named,
timed operation representing a piece of
the workflow.

Tail-based sampling: Where the deci-
sion to sample is made after the full trace
information has been collected.

Trace: The tracking and collecting of
data about requests as they flow through
microservices as part of an end-to-end
distributed system. A trace is made up of
one or more spans.

15New Relic: A Quick Introduction to Distributed Tracing

What’s Next?
Now that you understand how valuable distributed tracing can be in helping you find
issues in complex systems, you might be wondering how you can learn more about getting
started. Read the white paper, “Gain an Edge with Distributed Tracing.”

https://newrelic.com/resources/white-papers/gain-an-edge-with-distributed-tracing

©2008-20 New Relic, Inc. All rights reserved. 06.2020

	Introduction: Cutting Through the Complexity
	What Is Distributed Tracing?
	Why Does Your Business Need Distributed Tracing?
	How Does Distributed Tracing Work?
	When Do You Use Distributed Tracing?
	Why Is Sampling Important to Understand?
	A Mini-Glossary of Distributed Tracing Terms
	What’s Next?

	Button 16:
	Button 15:
	Button 14:
	Button 13:
	Button 12:

