
White Paper

Preparing for the
Next Phase of DevOps
3 Ways to Conquer the Complexity
of Modern Cloud Environments

Preparing for the Next Phase of DevOps

2

Introduction:
A Tsunami of Complexity
Here at New Relic, we’ve been helping organizations do
DevOps right for years. During that time, we’ve shared
our own experiences with DevOps, continuously deliv-
ered new capabilities that help teams optimize their
use of DevOps and cloud native technologies, and
led the charge for data-driven approaches and best
practices to measure and track DevOps success.

Now that DevOps has gone mainstream and orga-
nizations that embrace it are seeing repeated and
growing success, it’s time to acknowledge the
emergence of a serious consequence of DevOps
and cloud native technologies and techniques: the
growing tsunami of complexity beginning to bear
down on organizations as they adopt microser-
vices, serverless, containers, and other approach-
es and technologies in the cloud.

This is not to say that DevOps and cloud native
approaches are bad; on the contrary, the ben-
efits of both far outweigh the cost of complexi-
ty. The point is that complexity creates risk that
organizations must take steps to mitigate before
it negatively impacts IT and business outcomes.
DevOps-committed companies that have not
yet acquired the skills, best practices, and tools
for this next phase of modern application devel-
opment will find it extremely difficult to continue
meeting their application performance and avail-
ability goals.

In this white paper, we’ll look at where we are with
DevOps today, why complexity is increasing, and
how your organization can start cutting the com-
plexity sooner rather than later.

Need more background
on DevOps?
While this paper assumes a basic under-
standing of DevOps, here are some addition-
al resources that can be helpful no matter
where you are in your DevOps journey:

• What Is DevOps?

• DevOps Done Right: Best Practices to Knock
Down Barriers to Success

• DevOps Without Measurement Is a Fail

Long Live DevOps!
DevOps principles, culture, processes, and tools
help today’s organizations address the challeng-
es they face in a software-driven world—the push
to transform digitally, innovate, accelerate time to
market, adapt quickly to change, and deliver flaw-
less customer experiences.

In its State of DevOps 2019 report, DevOps Research
and Assessment (DORA) says, “Many analysts are
reporting the industry has ‘crossed the chasm’
with regards to DevOps and technology transfor-
mation, and our analysis this year confirms these
observations. Industry velocity is increasing and
speed and stability are both possible, with shifts to
cloud technologies fueling this acceleration.”

While DORA’s report calls out cloud as fueling
speed and stability, its analysis shows that the use
of cloud computing is also predictive of software
delivery performance and availability. The high-

https://newrelic.com/devops/what-is-devops
https://newrelic.com/resource/devops-done-right
https://newrelic.com/resource/devops-done-right
https://newrelic.com/resource/how-to-measure-the-success-of-devops?content=eBook
https://cloud.google.com/devops/state-of-devops/

Preparing for the Next Phase of DevOps

3

est performing teams in the DORA report were
24 times more likely than low performers to exe-
cute on all five capabilities of cloud computing as
defined by the National Institute of Standards and
Technology (NIST).

For instance, cloud computing on AWS enables
engineers to create self-service methods for pro-
visioning infrastructure through AWS Service Cat-
alog. Developers can quickly try new things, fail
fast, and get new products to market faster—with-
out having to wait for services to be provisioned
for them. Fully managed services help teams take
advantage of AWS resources, while automation in
the form of AWS Developer Tools helps them do so
more quickly and efficiently.

It can be safely said that DevOps done right deliv-
ers resounding success in both IT and business
outcomes—but wait, what are those dark clouds
building on the horizon? Is a backlash imminent?

The Price of Success
To gain the speed, agility, resiliency, scalability,
and other core benefits of modern application
development, DevOps teams are starting to pay a
price—and that price is complexity. Not that mono-
lithic applications aren’t complex (as well as brittle,
unwieldy, difficult to scale, and other characteris-
tics that generally slow innovation to a crawl) but
modern cloud native environments are creating a
different type of complexity for which some teams
are largely unprepared.

Teams modernize by breaking up their monolithic
applications into smaller microservices that can
be independently owned and deployed. Microser-
vices are easier to maintain and can be reused to
accelerate development. At the same time, teams
also make their applications more portable and
scalable by adopting modern technologies such
as containers (Docker) and container orchestra-
tion (Kubernetes) using Amazon Elastic Container
Service (ECS) and Amazon Elastic Kubernetes Ser-
vice (EKS) or serverless using AWS Lambda.

Kubernetes cluster explorer displaying KPIs for a specific pod

All of this leads to a growing number of micros-
ervices, running across hundreds of containers
or operating as serverless functions. Multiply that
by daily or hourly deployments for many different
services at a time. Add in fluid infrastructure and
automation such as containers, load balancing,
and autoscaling.

The Role of Roles in DevOps
Originally, roles and responsibilities within
DevOps were more distinct:

• Dev: Engineers own their applications
end-to-end, including infrastructure, pro-
visioning, capacity, and more.

• Ops: Engineers use dev-like tools to
manage their infrastructure, including
monitoring and automation/scripting.

Today, roles are more amorphous as the
DevOps goal has evolved to be “remove
all organizational barriers to shipping
enhancements to customers; accelerate
with tooling and automation.”

https://devops.com/5-reasons-aws-service-catalog-is-sexy-for-devops-and-cloud/
https://devops.com/5-reasons-aws-service-catalog-is-sexy-for-devops-and-cloud/
https://aws.amazon.com/products/developer-tools/
https://newrelic.com/resource/enterprise-guide-continuous-application-modernization
https://www.docker.com/
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/lambda/

Preparing for the Next Phase of DevOps

4

The result is a swarm of moving parts that grows and
changes moment by moment. Where should you
look to find the root cause of an issue? It may be a
problem that occurs in a container that only exists for
a short amount of time under certain circumstances.

It’s not just the moving parts that create complexity,
but the amount of operational noise that’s generat-
ed by each of the parts. Every piece of infrastructure
and every microservice can create data about met-
rics, events, logs, and traces (we call this collection of
telemetry data M.E.L.T. and you can read more about
it in this introduction to the topic). Where should
you look to understand the true origin of a perfor-
mance issue?

Taming the complexity and tuning out the noise
without losing actionable insight should be the next
step in your DevOps journey.

Key Principles for the
Next Stage of DevOps
Up until now, teams have often focused the major-
ity of their efforts on the Dev part of DevOps—hon-
ing their abilities to deliver software faster, more
frequently, with greater reliability and availability,
and with fewer errors.

Now, it’s time to focus on the Ops part of DevOps,
where two key principles will serve you well as
you move to overcome the complexity of modern
cloud native applications and environments:

1. Focus on getting the culture right
For DevOps success, culture has been, and will con-
tinue to be, critical. Culture is about how teams are
formed, how team members work together collab-
oratively, and how they share responsibility for the
software that’s being built. Transparency and com-
munication within and across teams helps develop
shared understanding in support of DevOps’ goals.

However, one core characteristic—trust—is some-
times overlooked. Trust is perhaps the most critical
cultural component for DevOps teams to accept
and master. Leaders must trust their teams, teams
must trust other teams, and team members must
trust each other.

Without trust, the other essential cultural character-
istics of autonomy and responsibility can’t function.
When you give teams the autonomy and responsi-
bility to own what they ship, and the tools they need
to do so correctly (such as Amazon Elastic Beanstalk,
AWS Lambda, and AWS CloudFormation), you have to
trust that they will do the right thing.

“The new microservices way
of building software optimiz-
es for rapid and large-scale
change, but there is a cost,
and that cost is complexi-
ty. With powerful technology
like Kubernetes, real risks can
result if organizations aren’t
ready for the complexity
that comes with distributed
systems. I implore custom-
ers to take serious steps to
get ready for modern sys-
tems and use modern tools
to work with them.”

Kelly Looney, SI Practice Lead, DevOps,
Amazon Web Services

https://newrelic.com/platform/telemetry-data-101
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/lambda/
https://aws.amazon.com/cloudformation/

Preparing for the Next Phase of DevOps

5

2. Instrument and
measure everything
Measurement is one of the five pillars of the CALMS
framework (Culture, Automation, Lean, Measure-
ment, Sharing) coined by DevOps expert Jez Humble.
Comprehensive and contextual data is critical to
the successful functioning of DevOps as complexity
grows. Getting a complete view of your architec-
ture, no matter how ephemeral, is key to coping
with this complexity. Having the right data will tell
you what’s working well, what’s not, and where to
focus your team.

Data reduces finger pointing by removing emotion
from the decision-making process and instead
fosters a culture of collaboration and empathy. It
gives everyone within DevOps teams a common
language across skills, experience, and roles.

3 Ways to Conquer
Complexity and
Continuously Improve
Outcomes
As you continue to mature and evolve your DevOps
efforts and prepare for the next stage of complexity,
there are three competencies your team should
strive to master as it hones its Ops performance:

1. Observability
The antidote to complexity in modern cloud native
environments is observability. When you instru-
ment everything and use that telemetry data to
form a fundamental working knowledge of the
relationships and dependencies within your sys-
tem as well as its performance and health, you’re
practicing observability.

Observability gives teams the ability to see a con-
nected, contextual view of all of their performance
data in one place, in real time, to pinpoint issues fast-
er, understand what caused an issue, and ultimately
deliver excellent customer experiences. It helps
teams make informed decisions about changes
being made. Does the service being updated by
the team communicate with another service that
the change might break?

To learn more about observability,
read The Age of Observability:
Why the Future Is Open, Connect-
ed, and Programmable

2. Fast feedback loops
Succeeding at failing, in the form of “failing fast,” is
a desired capability for DevOps. Author, research-
er, and DevOps expert Gene Kim names ampli-
fied feedback loops as one of the Three Ways that
frame the processes, procedures, and practices of
DevOps. He cites the importance of creating right-
to-left feedback loops, with the goal of shortening
and amplifying them so corrections can be made
continually.

Fast feedback loops combine the principle of trust
with tools and processes that enable your teams to:

Netflix Adopts an Operate-
What-You-Build Model
In a post on its Tech Blog, Netflix tells the story
of how and why it decided to move to a shared
ownership approach, where the team that
builds the software is also responsible for
operating and supporting it.

https://devops.com/using-calms-to-assess-organizations-devops/
https://devops.com/using-calms-to-assess-organizations-devops/
https://newrelic.com/resource/what-is-observability
https://newrelic.com/resource/what-is-observability
https://newrelic.com/resource/what-is-observability
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://medium.com/netflix-techblog/full-cycle-developers-at-netflix-a08c31f83249

Preparing for the Next Phase of DevOps

6

• Encourage experimentation: Promote a cul-
ture of innovation and bold ideas (along with
failures) to help accelerate time to market and
adoption of new technologies while improving
business outcomes.

• Deploy frequently: Encourage small, frequent
deployments of micro features and bug fixes,
and measure the success of each deployment.
Learn more about instrumenting your pipeline
in this webinar.

• Accept risk: Small, low-impact failures are okay
when you recognize that they are the cost of
shipping faster. Accept that there will be more
frequent, but smaller, production issues, with
the understanding that consistency is more
important than perfection. The production
issues that do occur will be, in aggregate, vastly
less impactful than large outages.

• Learn from every mistake: After resolving an
incident, accurate and thorough documenta-
tion helps your team learn from the incident and
take preventive measures to keep it from occur-
ring again. The preferable way to accomplish
this involves holding a blameless retrospec-
tive that focuses on constructive learning and
improvement, not punishment or blame.

• Use release dashboards: For every feature
release, create a “feature dashboard” that tracks
key performance indicators specific to that
feature. Your dashboard should track feature
deployment as well as usage of AWS services by
those features to understand the impact on the
application.

3. Continuous improvement
To progress from DevOps adoption to becoming a
high-performing DevOps organization that mitigates
complexity and optimizes outcomes requires a cul-
ture and process dedicated to continuous improve-
ment. That culture of continuous improvement is
clearly a key reason the number of elite performers in
the DORA State of DevOps report tripled compared to
the previous year.

Start by correlating performance to business out-
comes. This will help you show how infrastructure
and application changes ultimately impact the
customer experience and business metrics. If the
results can’t be measurably seen by the business,
it’s hard to argue the deployment was successful.

Other ways of continuing to improve DevOps
performance despite complexity include using
advanced release strategies to help you:

• Make side effect-free sandboxes available: Part
of encouraging experimentation is creating envi-
ronments in which there are no consequences
of taking risks and trying new approaches and
technologies.

• Turn on feature flags: When a release happens,
the feature flag is flipped. It can be unflipped if
things are not going as expected.

• Communicate with consumers of your services:
Each business unit should behave as produc-
tion-level consumers of each other. This means
a period of maintaining new and previous
versions simultaneously. While this results in
more overhead, the benefit is low-risk, head-
ache-free releases.

• Take a rollout approach: For riskier features, use
a rollout across your user base. The feature flag
can be a meter instead of a toggle (e.g., 0% of
users 5% 10% 25% 50% 70% 100%).

KPIs related to specific feature deployment

https://newrelic.com/webinar/best-practices-code-pipeline-180912
https://cloud.google.com/devops/state-of-devops/

© Copyright 2020, New Relic, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. 01.2020

Preparing for the Next Phase of DevOps

• Use canary testing: Canary testing refers to the
practice of releasing a code change to a subset of
users and then looking at how that code performs
relative to the old code that the majority of users
are still running. Canary servers or containers run
the new code and when new users arrive, a subset
of them are diverted to the canary hosts. New Relic
can help you monitor and measure whether the
new code is working correctly.

Canary deploy KPIs

• Adopt blue/green deployments: To avoid down-
time at go-live and to accelerate rollback if
something goes seriously wrong, consider using
a blue-green deployment approach. With blue-
green deploys, you have two nearly identical
production environments: one green and one blue.
For instance, the blue environment is your current
production environment. The green environment
is where you conduct final testing, and, based
on that success, you start routing users to that
environment as you go live. The blue environment
is then idle but gives you a rapid way to roll back
if needed.

• Take advantage of dark launching: Dark launch-
ing is similar to canary testing but rather than
launching a new feature to assess how that code
performs versus the old, you instead release it to a
small set of users to assess the response of users
to the new feature. Usually, these users aren’t
aware of the new feature and you don’t highlight
it to them, hence the term. For example, to achieve

a dark launch of a new UI on your website, launch
it on an alternate domain or URL or include it on a
hidden IFrame on your homepage.

Conclusion
As more and more organizations “cross the chasm”
with DevOps, taming complexity and focusing on
improving the Ops part of DevOps will become essen-
tial. By building observability, using fast feedback
loops, and continuously improving, you can elevate
your team to the high-performing or elite-performer
category.

New Relic can help you cut through the complexity of
modern application environments. Our tight integra-
tions with AWS help you manage the complexities of
your AWS environment, including EC2, Lambda, and
Kubernetes deployments.

To learn more, visit newrelic.com/devops.

No Finger Pointing
The purpose of a blameless retrospective is
for all parties to reach an understanding of
the situation that led to an incident, the result-
ing incident response, and gaps or points for
process improvement—all with the goal of
avoiding, or at least mitigating, a recurrence
of the problem.

Learn how and why your teams should hold
blameless retrospectives in this blog post.

https://blog.newrelic.com/engineering/canary-deploys-best-practices/
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://newrelic.com/devops
https://blog.newrelic.com/technology/blameless-retrospectives/

