
White Paper

Modernizing with AWS:
Getting Started with
‘Observability-Driven’ Refactoring

Part 3 of our 3-part series on legacy app modernization in the cloud

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

02

Introduction
As your organization moves existing applications to Amazon Web Services (AWS), you’ll need to

decide on the right approach for each application: rehosting, replatforming, or refactoring. This

third white paper in our Application Modernization series covers the latter approach.

Refactoring in its simplest form means changing application code for the better. Typically, the

goal is to improve performance, quality, and maintainability. Refactoring for AWS expands those

benefits and enables additional ones such as better availability, scalability, and reliability. Another

major benefit that refactoring provides is the ability to offload large amounts of undifferenti-

ated work to AWS. Tasks such as hardware maintenance, operating system patch management,

database updates, and more are all managed for you when using fully managed services such as

Amazon Elastic Container Service (Amazon ECS), Amazon Elastic Kuber-

netes Service (Amazon EKS), or AWS Fargate, allowing your team to focus

on what differentiates your business.

Granted, refactoring is the riskiest of the modernization strategies,

because it usually involves changing how an application works, either

through logic or a significant shift in the underlying technology. At

the same time, no other modernization approach delivers the level of

positive impact and return on effort that refactoring can.

Read on to learn about the risks and benefits of refactoring, different

types of refactoring in the AWS environment, and how New Relic can

help you drive successful outcomes in the process.

Why Choose to Refactor?
Some of your applications are more critical to the business than others. Is an application strate-

gically essential? Does it contribute revenue? Does it warrant further investment? If the answer

is “yes” to any of these questions, it may be a candidate for refactoring.

While less strategic applications are more likely to be candidates for rehosting or replatforming,

your strategic applications are the ones that are more likely to be your best choices for refactor-

ing, because the investment you make will pay off in tangible outcomes. Some of the compelling

reasons that companies choose to refactor an application include:

What Is Refactoring?

Martin Fowler, author of Refactoring:

Improving the Design of Existing Code,

defines refactoring as “a disciplined

technique for restructuring an exist-

ing body of code, altering its internal

structure without changing its external

behavior.”

https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

03

•	 Drive new revenue streams and/or optimize existing ones

•	 Create improvements that directly impact future revenue capabilities

•	 Deliver a better customer experience

•	 Enable faster time-to-market with new features

•	 Support a changing/new business model

•	 Comply with changing/new regulations

•	 Easily scale both up and down to meet planned and unplanned changes in traffic

Managing the Risk/Reward
Balance of Refactoring
To make refactoring worth the risk and effort, it’s important to minimize the risk side of the

equation while maximizing the reward side.

To do this, you need to understand what risks your organization might face when refactoring an

application to/on AWS:

•	 Failure to fully understand the dependencies of the application, externally and internally

•	 Insufficient analysis to fully understand project complexity, resulting in failure to meet

project goals

•	 Extensive changes that require extended testing and debugging with dual infrastructures,

temporarily driving up costs

•	 Failure to achieve expected business outcomes

•	 Negative impact on the customer experience

•	 Unexpected introduction of new issues that need to be

fixed, extending project length and cost

What many of these risks have in common is a lack of under-

standing of—and visibility into—the inner workings of the

application. Data and observability significantly lessen the

risks associated with the refactoring effort by helping you

develop a deep understanding of the application before

deciding how and what to refactor. For instance, using service

maps in New Relic One, you can identify all of an application’s

dependencies and take them into account when planning a

refactoring effort.

The Essential
Role of DevOps in
Refactoring Success

Successful refactoring requires a strong

culture of agility and DevOps. If you

cannot easily test your application in

minutes, then you won’t be able to reg-

ularly improve it. You can learn more

about developing a robust, data-driven

DevOps strategy, culture, and practices

at newrelic.com/devops.

http://newrelic.com/devops

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

04

Figure 1. Explore application dependencies and components with the New Relic One service map.

The Value of Observability for Refactoring
The more clearly you understand an application as it exists today, the better the outcome of

your refactoring effort. With observability of the application via monitoring and measuring, the

insight about how the application is working in its current state extends throughout and beyond

the immediate refactoring project to let you track and demonstrate the impact of your efforts.

The core principle of observability for refactoring is to instrument and measure everything

before, during, and after the application has been refactored.

Before: To properly identify candidates, use New Relic One to gain a holistic view of the entire

application, which gives you visibility and understanding into more than just the running state.

Then you can correlate the running state with the codebase to understand where the biggest

impact will be. Questions to ask of your data include:

•	 What parts of the codebase change the most or have the most issues filed against them?

These are potentially good candidates for making them a component (i.e., a microservice

running in a container or AWS Lambda).

•	 Which parts of the codebase have issues regularly reopened (which indicates rework)?

•	 Where are you doing significant amounts of work in code that could be handled by a

component?

•	 Which parts of the application perform well? Which parts are complex and prone to errors?

Which parts take the longest to run?

•	 Where could you use more modern technology to:

	◦ Mitigate performance problems?

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

05

	◦ Use serverless technologies?

	◦ Use self-healing infrastructure and services rather than manage the infrastructure?

	◦ Stop self-managing infrastructure if it does not give you a competitive advantage?

•	 How well are deployments going? How fast are things provisioned?

•	 What are the key performance indicators (KPIs) that help you measure business impact?

Figure 2. Distributed tracing lets you see the path that a request takes as it travels through a distributed system. Use it to
discover the latency of components along a path or to understand which component is creating a bottleneck.

During: Test the application to make sure refactoring isn’t causing problems. Use New Relic

to monitor the performance of code and external services to understand how customers are

being impacted during the switch. Determine how long you need to run dual infrastructures to

ensure you have fully tested and switched over the refactored application(s).

Figure 3. Closely observe DevOps KPIs during refactoring.

After: In addition to understanding how refactoring affected application performance, you can

also track other outcomes, including:

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

06

•	 Issues: Are fewer tickets being filed?

•	 Costs: Is this application costing you less in the cloud and/or is the current spend justified?

•	 Technical debt: Is the amount of rework less?

•	 DevOps: Are you deploying more often each day than you were previously? How much more?

•	 Customers: How was the customer experience impacted?

•	 Business: How were business KPIs impacted?

Figure 4. Track business, application, operational, and other KPIs.

Which Type of Refactoring Should You Use?
For those familiar with code refactoring, refactoring on AWS will feel

familiar. However, it’s not just about refactoring code. It’s also about

taking advantage of cloud technology to fundamentally:

•	 Reduce the overall code footprint

•	 Decrease the surface area that you need to secure

•	 Automate more of the management of your systems and

reduce errors

•	 Achieve cost optimization

•	 Increase efficiency and performance

In the AWS environment, there are three different types of refactoring

you can leverage for your application: code, deployment, and technol-

ogy refactoring.

Best Practices for
Measuring Your
Code Pipeline

To learn how to use instrumentation

to push changes through produc-

tion more quickly, watch this webinar

presented by New Relic DevOps solu-

tion experts.

https://newrelic.com/webinar/best-practices-code-pipeline-180912

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

07

Traditional Refactoring: Improving Code
Going back to its traditional meaning, the first type of refactoring is all about improving an

application’s code. The idea is to identify portions of the application where it makes the most

sense to re-architect the code for quality, maintainability, performance, and predictability. It’s

an opportunity to fix existing issues and create less complex and more streamlined code.

The overarching questions are, “How do you know which portions of the application should be

refactored? What will deliver the biggest benefit for the effort involved?”

The answer is in the data you’ve been tracking about the application. By integrating data from

your code pipeline into New Relic One, you can see how changes to the codebase impact opera-

tions. Using the data gathered from the “before” stage of informed refactoring gives you insight

into problem areas and opportunities for refactoring. By reviewing the baselines you’ve col-

lected, you can start to develop a list of application areas to improve.

Next, review the code itself. For example, a more traditional e-commerce application might

have areas in the code that would be good candidates for refactoring based on the metrics

you’re tracking. However, you will still need to consider the effort in context with the running

state of the application and end-user experience to determine whether an area will have a

material impact and the corresponding positive outcomes for which you’re aiming.

Refactoring for a Different Deployment Model
After you’ve decided on the parts of the codebase to work on, the next step is to consider a

newer deployment model. Choose the deployment model that makes the most sense for your

organization based on your IT philosophy and future direction.

When you refactor the code, you could decide to deploy it back into a self-managed server.

Alternatively, you could use AWS services to handle more of the low-value tasks for you instead.

For example, you could deploy using:

•	 AWS Elastic Beanstalk for ease of use, deployment, and scaling of applications

•	 AWS ECS/EKS for Kubernetes containerization

•	 AWS Fargate for a fully managed cluster environment

•	 AWS Lambda to run code without provisioning or managing servers (serverless model)

Decisions about deployment models will impact the amount of maintenance required in the

future. As you move more of your workloads to the cloud, it makes sense to adopt more

advanced services and technologies such as serverless that reduce the amount of undifferenti-

ated work needed to support your applications.

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

08

Figure 5. Monitor AWS Lambda KPIs with New Relic One.

A Look at Technology Refactoring
Beyond deciding what to change and improve in your application’s

code base, it’s important to also consider how new technologies can

help reduce the number of to-do’s on your IT list. While optimizing

your infrastructure is best done as part of a rehosting or replatform-

ing effort (see our white papers on rehosting and replatforming to

learn more), when it comes to your data store, there are many benefits

of refactoring the application to take advantage of newer technology.

In the past few years, the belief that the relational database man-

agement system (RDBMS) is the only way to hold data has become

outdated. Today, there are diverse data stores that support how an

application uses data, including these from AWS:

•	 Amazon DynamoDB, a key-value document database

•	 Amazon Elasticsearch Service, a fully managed service for quickly

searching your data

•	 Amazon Quantum Ledger Database (QLDB), which provides cen-

trally managed, transparent, and cryptographically verifiable

transaction logs

As part of your informed refactoring approach, review the data you’ve been collecting about

your application to help you understand where you might take advantage of these AWS technol-

ogies. For example, if your application needs massive scale and a distributed approach, it may

Five Design Principles
for Cost Optimization
in the Cloud

1.	 Adopt a consumption model

(serverless).

2.	 Measure overall efficiency.

3.	 Stop spending money on data cen-

ter operations.

4.	 Analyze and attribute expenditure.

5.	 Use managed services to reduce

cost of ownership.

https://newrelic.com/resource/modernizing-aws-rehosting-your-applications
https://newrelic.com/resource/modernizing-aws-replatforming-your-applications

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

09

be beneficial to refactor to a NoSQL database service such as Amazon DynamoDB. Similarly, if

several of your queries use the “like” clause, Amazon Elasticsearch might be a good option for

refactoring.

For any technology refactoring you’re planning to do, it’s critical to ensure that the benefits to

the business, IT, and end users will outweigh the cost and time you’ll invest in making the change.

Refactoring Within the Context of
the AWS Well-Architected Framework
The AWS Well-Architected Framework helps you understand the pros and cons of decisions

you make about your applications on AWS. The Framework includes architectural best prac-

tices for designing and operating reliable, secure, efficient, and cost-effective systems in the

cloud. Together with New Relic One, the most powerful cloud-based observability platform, the

Framework provides a way to consistently measure your applications against best practices and

identify areas for improvement.

Figure 6. The AWS Well-Architected Framework.

1. Cost optimization

Cost optimization is not simply about the amount that is spent, but the impact of the application

spend. By incorporating business data via custom events in New Relic One, you can track reve-

nue coming from customers on your website. By breaking this down by geography in New Relic

One, you can gain insight into where your investment in performance improvements would

have the biggest impact for your customers.

https://aws.amazon.com/architecture/well-architected/

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

10

Figure 7. Track your AWS spend side by side with infrastructure, application, and geography KPIs.

For example, performance in Brazil might not be as good as you want it to be, but it might not

make sense to invest in that market because it isn’t one of your top targets. Japan might have

very few end users currently, but your organization wants to invest heavily to grow business in

that geography. Therefore, you need to prioritize the experience for users in Japan. This com-

bination of performance data and company objectives should influence how you determine

appropriate investments.

Another way to see if you’re optimizing costs is to review your appli-

cation’s Apdex score in New Relic One. Does it make sense based

on your spend for that application? Or are you over-provisioning

(and over-paying) to maintain happy customers at your current

Apdex score?

2. Performance efficiency

This pillar within the Framework is less about application performance

and more about resource usage and how quickly and easily you can

change things. How easy is it for your developers to try out new tech-

nology based on how you have deployed it? Can you refactor quickly?

For refactoring to work, you need automation and infrastruc-

ture-as-code in place to help you keep up with today’s increasingly

difficult demands. You can assess how well your organization is doing

in these areas by monitoring and tracking:

•	 Deployment frequency

•	 Deployment success

•	 Time to provision an environment

Six Design Principles for
Operational Excellence
in the Cloud

1.	 Perform operations as code.

2.	 Annotate documentation.

3.	 Make frequent, small, reversible

changes.

4.	 Refine operations procedures

frequently.

5.	 Anticipate failure.

6.	 Learn from all operational failures.

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

11

Understanding how these metrics change after a refactoring will be a leading indicator of hav-

ing made the right refactoring choices.

3. Reliability

Reliability goes beyond whether your application is up or down. It’s equally important to track

and understand how well your application is scaling during peak events. What happens when

your traffic spikes? How good is your testing? Are issues found in development, test, or produc-

tion? What is your mean time to resolution (MTTR)?

With refactoring, the goal is always to achieve greater stability after the project. Automation

plays a large part in improving stability because it reduces the risk of human error. That’s why

after a refactoring effort, your organization should see not only fewer issues, but should be

identifying those issues earlier in the application life cycle.

Figure 8. A dashboard showing the Well-Architected Framework, application, and end-user KPIs.

4. Operational excellence

This pillar is about improving operational processes and procedures, team performance, and

collaboration. It’s also about fostering a culture where experimentation is embraced. To track

improvement, this requires monitoring not just application performance, but the application’s

codebase and the use of infrastructure-as-code to automate the operation of the application.

Focus on how well your team is using infrastructure-as-code to improve and automate processes.

You can do this by monitoring indicators in your cloud environment, such as the number of AWS

CloudFormation deployments of specific templates and any errors associated with those deploy-

ments. Also, keep an eye on how often your repository of Terraform or CloudFormation code

changes. Where are issues being found—in development, test, or production?

© Copyright 2020, New Relic, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. 12.2020

Modernizing with AWS: Getting Started with ‘Observability-Driven’ Refactoring

5. Security

This principle is about improving your security posture. One goal of refactoring is to reduce the

amount of code to maintain, which reduces complexity, testing, and the likelihood of security

flaws. Another goal of refactoring for AWS is that your organization has fewer technologies that

you must manage yourself. This reduces the amount of infrastructure for which your organi-

zation is responsible for vulnerability and patch management. Less code to maintain and less

infrastructure to patch improves your security posture by reducing the attack surface that your

organization needs to protect.

Conclusion
As an introduction to the topic of refactoring applications for the AWS environment, we’ve cov-

ered the basics of why and how a refactoring approach based on observability can help you

achieve the highest outcomes and demonstrate the impact of your efforts on the application,

your customers, and your business. We’ve discussed how you can use New Relic One to deter-

mine what and when to refactor to continually modernize your applications for the greatest

benefit, using data about your:

•	 Infrastructure

•	 Application running state

•	 End-user experience

•	 Business KPIs

•	 DevOps processes

•	 Codebase changes and issues

One final word about refactoring: It’s more than a single, one-time project. View it as the ongoing

process of continuously making your applications better in order to improve your performance,

customer experience, and business outcomes.

To learn how New Relic One can help you in refactoring or any phase
of application and infrastructure modernization, visit newrelic.com/aws.

https://www.newrelic.com/aws

