
White Paper

Gain an Edge with
Distributed Tracing
Faster Troubleshooting for Distributed Systems

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

02

Table of Contents

FROM MONOLITH TO MICROSERVICES: CHALLENGES AND OPPORTUNITIES 03

TRACING THE PATH THROUGH COMPLEX DISTRIBUTED SYSTEMS 04

EFFICIENT HEAD-BASED SAMPLING 05

SURFACING ACTIONABLE TRACES WITH TAIL-BASED SAMPLING 06

REMOVING THE MANAGEMENT BURDEN 07

HEADS OR TAILS? YOU DON’T NEED TO FLIP A COIN 09

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

03

From Monolith to Microservices:
Challenges and Opportunities

Traditionally, monolithic software environments—
where single-tiered software applications
combined different components into one pro-
gram—were standard. For example, a simple
e-commerce application could include several
functions bundled together, such as inventory, pay-
ment, and shipping. When something went wrong,
and issues cropped up, it was relatively easy to
identify which part of the code was at fault and
why. You could dig through transactions inside that
part of the application to find bottlenecks or errors.

Many organizations continue to find monolithic
environments serve their purposes well. But as more
engineering organizations move from monoliths to
microservices, containers, and serverless archi-
tectures, what they gain in speed and flexibility is
countered by increased complexity. Microservices
environments can include dozens or hundreds of
services, and seeing how they connect and how
requests flow through them to diagnose an issue
can be challenging—but also critical.

Not only that, the increased adoption of DevOps
and site reliability engineering (SRE) practices cou-
pled with technologies like orchestration, automa-
tion, and CI/CD for frequent software deployments
in highly distributed environments, also introduce
greater complexity for application monitoring.
There are more points of failure in a distributed
system, not to mention the added complexity of
having various teams managing different parts of
the system.

When issues occur, if you don’t have the right mon-
itoring instrumentation in place, you risk wasting
a significant amount of precious time searching
across your distributed systems, increasing mean
time to resolution (MTTR). The time squandered
while searching for answers leaves you with less
time for innovating and developing new software
or features.

https://newrelic.com/devops/how-to-reduce-mttr
https://newrelic.com/devops/how-to-reduce-mttr

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

04

When you monitor software and system perfor-
mance for observability, you need four fundamen-
tal telemetry data types: metrics, events, logs, and
traces. For large, modern systems, which are often
distributed across many microservices, “tracing”
often refers to distributed tracing, which is a way to
monitor and analyze requests as they propagate
through a complex, distributed environment and
hop from service to service.

When you instrument systems for distributed trac-
ing, all transactions generate trace telemetry, from
the frontend user to the backend database calls.
Referring back to the e-commerce example, when
you click on a cart to make a purchase, that request
now travels through several distinct frontend and
backend services. The request might include the
inventory service to ensure there’s inventory avail-
able, the payment service, the shipping service,
and ultimately the request completes and comes
back to the user. Every time a request hops from
one service to another, it emits a span with trac-
ing telemetry. Once the request has finished, spans
are stitched together to create a complete trace of
the request’s journey through the system.

New Relic distributed tracing

With distributed tracing, you can:

• Trace the path of a request as it travels across
a complex system

• Understand upstream and downstream
service dependencies

• Discover the latency of the components
along that path

• Understand where bottlenecks are occurring
in the request path

• See and analyze where errors happen in the
transaction at the individual service level

Besides e-commerce companies, technology,
media, and financial services organizations are
among those that have thousands of customers
using their systems, requiring the use of distributed
tracing for troubleshooting complex architectures.

Distributed tracing requires reporting and pro-
cessing vast amounts of tracing telemetry. For
this reason, many organizations use sampling to
capture a representative sample of trace activity.
Ideally, the sampled data represents the charac-
teristics of the larger data population.

This white paper outlines the different types of
sampling methods used in distributed tracing. It
shows why software teams need the flexibility
to choose head-based sampling or fully man-
aged tail-based sampling to meet the monitoring
requirements for each application.

Tracing the Path Through
Complex Distributed Systems

https://newrelic.com/platform/telemetry-data-101
https://newrelic.com/platform/telemetry-data-101
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

05

Traditional distributed tracing solutions use head-
based sampling to track and analyze what hap-
pens to a transaction across all of the services it
touches. Typically, head-based sampling is done
within the agent that’s responsible for collect-
ing trace telemetry by randomly selecting which
traces will be sampled for analysis. The sampling
decisions are made before traces are complete.
Because there’s no way to know which trace might
encounter an issue, you may miss traces that con-
tain unusually slow processes or errors.

Head-based sampling works well for giving you
an overall statistical sampling of requests through
a distributed system. It does a good job of catch-
ing traces with errors or latency in applications

that have a lower volume of transactions and in
environments that have a mix of monolith and
microservices-based architectures. Head-based
sampling is an efficient way to sample a vast
amount of trace data in real time, and there is
little to no impact on application performance.

For New Relic customers, distributed tracing with
head-based sampling is included with New Relic
APM Pro. And with New Relic Trace API, you can
ingest trace data from open source instrumenta-
tion tools such as Zipkin, Istio, OpenTelemetry, and
OpenCensus and use New Relic distributed trac-
ing as a backend for visualization, troubleshooting,
and analysis.

Efficient Head-Based Sampling

https://newrelic.com/products/application-monitoring/features
https://newrelic.com/products/application-monitoring/features
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/trace-api/introduction-trace-api
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/trace-api/report-zipkin-format-traces-trace-api
https://github.com/newrelic/newrelic-istio-adapter
https://blog.newrelic.com/product-news/opentelemetry-beta-support-new-relic-one/
https://opencensus.io/

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

06

Distributed tracing with tail-based sampling helps
software teams troubleshoot issues in highly
distributed, high-volume microservices-based
systems where teams must observe all trace
telemetry and sample the traces that contain
errors or unusual latency.

You could be cloud-native, or you may have “lifted
and shifted” and completed a cloud migration. Need-
less to say, if you need the highest level of gran-
ularity in troubleshooting, tail-based sampling is
less of a “nice to have” and more of a requirement.

Some organizations need their distributed tracing
tool to observe and analyze every span—every hop
between services—and surface the most action-
able traces for troubleshooting, because any
downtime could cost millions of dollars, especially
during peak events. For example, one company
has an average span load of 3 million spans per
minute, but when a new product launches, it sees
spikes of 300 million spans per minute. For this type
of organization with a high transaction volume,
traditional head-based sampling is inadequate.

Some vendors offer distributed tracing solutions
with tail-based sampling, but require customers to
deploy, manage, support, and scale gateways or
satellites in their environments for data collection.
What’s more, you’re required to take on additional
infrastructure costs to run the gateways or satel-
lites. You also have to think about the networking
and scaling requirements when connecting the
instrumentation that’s generating telemetry data
to the vendor’s software, along with considering
additional data egress costs. All of this toil adds
additional operational burden for software teams.
The bottom line is that software teams shouldn’t
have to manage vendor gateways or satellites
when there’s a better alternative.

Surfacing Actionable Traces
with Tail-Based Sampling

Traditional head-based sampling (left) and tail-based sampling (right)

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

07

New Relic Edge with Infinite Tracing offers a fully
managed tail-based sampling service that
observes and analyzes 100% of spans across a
distributed system and provides visualizations
for traces with errors or unusual latency, so soft-
ware teams can quickly identify and troubleshoot
issues. There’s no infrastructure to manage, you
don’t need to staff or plan for operating the service,
and it provides on-demand scalability.

The service is located in the same region and pro-
vider as your cloud-based workloads. This capa-
bility allows for low-latency and low-cost data
transfer from New Relic agents, instrumentation
within serverless functions, or any other data

source, including third-party instrumentation.
Because New Relic Edge is a fully managed SaaS
solution, it allows you to eliminate the burden of
deploying, managing, and scaling third-party
gateways or satellites for data collection.

New Relic Edge observes every span and gives you
the metrics, error data, and the essential traces
you need. It provides critical insights by saving the
most actionable data to New Relic. The result is
unparalleled visibility into your distributed systems,
allowing you to easily understand the impact of
downstream latency or errors with detailed met-
rics, and then drill down to the saved trace data for
the most relevant traces.

Removing the Management Burden

New Relic Edge with Infinite Tracing

https://newrelic.com/products/edge-infinite-tracing

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

08

Troubleshooting distributed systems is a clas-
sic “needle in a haystack” problem. New Relic
Edge automatically eliminates the noise, based
on what’s important to you, such as focusing on
errors or long-running traces, giving you an inven-
tory of communication paths across your distrib-
uted system.

New Relic Edge sends the most actionable and
relevant traces to NRDB, the world’s most pow-
erful telemetry database, and you can leverage
enhanced distributed tracing capabilities such
as anomaly detection, condensed trace views,
deployment markers, trace groupings, and global
trace search for quick troubleshooting across your
distributed systems.

With New Relic Edge, you can:

• Enjoy a fully managed service that’s cloud-local
and scales on demand

• Observe and analyze 100% of the traces across
your distributed system

• Visualize the most actionable traces that
contain errors or unusual latency

• Eliminate the toil of deploying, managing,
supporting, and scaling third-party gateways
or satellites in your environments

• Leverage New Relic’s full support of
open instrumentation and standards for
trace telemetry

• Reduce the cost of data egress charges due to
proximity to your cloud workloads

• Troubleshoot more efficiently

• Reduce mean time to detection (MTTD) and
MTTR with high-fidelity actionable traces

• Empower engineers and developers to focus
on more important work, such as developing
new features

Quickly see exactly which spans have high latency and errors within a trace

https://blog.newrelic.com/product-news/nrdb-design-principles/
https://blog.newrelic.com/product-news/nrdb-design-principles/
https://blog.newrelic.com/product-news/new-relic-one-distributed-tracing-global-search/
https://blog.newrelic.com/product-news/new-relic-one-distributed-tracing-global-search/

© Copyright 2020, New Relic, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. 04.2020

Gain an Edge with Distributed Tracing: Faster Troubleshooting for Distributed Systems

Because New Relic offers flexible options for dis-
tributed tracing, you can make head- or tail-based
sampling decisions at the application level. For
critical applications for which you need to observe
and analyze every trace, you can choose tail-
based sampling, without having to worry about
managing sampling infrastructure.

New Relic is the only vendor that gives software
teams the flexibility to choose distributed tracing
with head-based sampling or fully managed tail-

based sampling. With less to manage, there’s more
room for innovation and gaining a competitive
advantage.

Getting started with New Relic Edge with Infinite
Tracing is easy. Visit New Relic Documentation to
learn more.

Heads or Tails? You Don’t
Need to Flip a Coin

https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works#sampling

