
White Paper

Effective Alerting
in Practice
An Introductory Guide to Creating an Alerting Strategy
for DevOps Teams

02

Table of Contents

INTRODUCTION 03

MODERN TECHNOLOGY STACKS: AFFECTING ALERTING THROUGH CHALLENGES AND CHANGE 04

Inherent challenges with alerting 04

Changes in technology affect alerting 04

System outcomes vs. root causes 05

Tracking system outcomes in practice 05

ALERTING DESIGN PRINCIPLES 06

CREATING AN ALERTING STRATEGY 07

Profiling and prioritization 07

Alert metrics for your entire stack 07

Create metrics from SLOs 08

Organizational strategies for alert policies 08

ALERTING FOR DYNAMIC AND SCALED ENVIRONMENTS 10

Use labels across environments 10

Manage alerts with APIs 10

Define your alerting as code 10

MANAGING DIFFERENT ALERTING SOURCES 11

MAKING ALERTING WORK FOR YOUR TEAM 12

INCIDENT RESPONSE LIFECYCLE FRAMEWORK 14

NEXT STEPS 15

Effective Alerting in Practice

03

Introduction

No one ever said that alerting was easy. How do
you ensure that alerts are delivered in a timely
manner while preventing as many false positives
and negatives as possible? Additionally, how do
you make sure you’re detecting issues on time and
not waking up your users in the middle of the night
with false alarms? Alert fatigue is real.

As software development moves faster and faster,
alerting becomes an indispensable practice, and
more so for modern DevOps teams. Why is this
the case?

To begin with, it’s important to consider the service-
level quality of your site performance across dif-
ferent dimensions:

• Reliability. Software is core to the success
of your business; you need to know that your
systems are up and running correctly.

• Troubleshooting. You can’t fix a problem you
don’t know about. If something goes wrong, you
need the context to fix it quickly.

• Automation. You can’t manually refresh your
homepage every 10 seconds; you need a tool
that will watch things for you around the clock,
every day of the year.

• Complexity. Your systems are too complicated,
and you can’t watch everything all the time; you
need an alerting practice that can scale with
your system’s growth.

• Outcomes. Ultimately, you’re responsible for
the digital experience that you deliver to your
customers and stakeholders. Unavailable,
broken, or sluggish systems are a sure way for
them to lose faith in you.

Because of these essential concerns, you must be
vigilant in your actions, and follow well-established
guidelines for setting alerts. In this guide, we’ll walk
you through how to create and manage an effective
alerting strategy for your technology stack. At a high
level, we’ll cover:

• How shifts in modern technology stacks are
leading to shifts in alerting strategies and the
adoption of AIOps (artificial intelligence for IT
operations) technology

• Some alerting and incident response best
practices for dynamic and scaled environments

• How to design and maintain an alerting system
useful to your organization and teams

An alerting system, when effectively implemented,
is one of the most important parts of any success-
ful DevOps team and incident response practice.

Effective Alerting in Practice

04

Modern Technology Stacks: Affecting
Alerting Through Challenges and Change

The demands on your alerting practices have only
increased with the shifts in your modern software
practices. Kubernetes environments, microser-
vices architectures, serverless, and cloud-based
infrastructures—these are very different approaches
to building and managing software from tradi-
tional monoliths running in static on-premises
data centers. Not surprisingly, monitoring and alert-
ing has had to evolve to address the new challenges
presented by these modern systems. In fact, many
teams have embraced observability to address the
challenges of understanding and operating these
more complex systems effectively.

Inherent challenges with alerting

Organizations can find alerting to be an inherently
difficult practice due to structural and competing
forces, such as:

• Sensitivity. Overly sensitive systems cause
excessive false positive alerts, while less
sensitive systems can miss issues and have
false negatives. Determining the correct
alerting threshold requires ongoing tuning and
refinement.

• Fatigue. The common approach to sensitivity
is for teams to be more conservative when they
set up alerts, but this results in a more sensitive
and noisy alerting system. If teams encounter
too many false positives, they will begin to
ignore alerts and miss real issues, defeating the
purpose of an alerting system.

• Maintenance. Systems grow and evolve quickly,
but teams are often slow to implement alerting
policies. This leads to alerting strategies that are

simultaneously filled with outdated policies and
gaps where teams aren’t providing coverage to
newer changes in their systems.

• Fragmented information. Many teams use
multiple different systems to manage alerts
across increasingly complex technology stacks,
which means that the information needed to
diagnose and troubleshoot a problem may be
spread across multiple tools.

Changes in technology affect alerting

Rapid changes in modern technology stacks are
demanding different approaches to alerting;
for example:

• Resources are ephemeral. Tracking resource
metrics can be difficult when resources readily
appear and disappear on demand. For example,
a container orchestration tool like Kubernetes
can automatically create and destroy containers
in response to changes in CPU load. Measuring
CPU saturation in a container then becomes
much less important than reporting about the
pattern of this CPU saturation behavior.

• Systems should scale dynamically. In a modern
DevOps world, systems scale up and down
quickly. If you have five hosts now, you may have
20 hosts an hour later and just 10 the following
hour. In such cases, is your orchestration
dynamically adding alerting policies to the
newly created hosts and adjusting for the hosts
it has removed? Static alert policies are useless
in an environment under constant change.

https://newrelic.com/resource/what-is-observability

Effective Alerting in Practice

05

• Services are abstracted. Cloud infrastructure
providers like Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform
(GCP) are increasingly abstracting services and
taking on the operational responsibilities that
used to be left to Operations teams. Because of
this, teams need alerting higher up the stack.

System outcomes vs. root causes

In Google’s Site Reliability Engineering book, the
company presents the case for making symp-
toms vs. causes part of an observability strategy.
This reflects a necessary shift in using the observ-
ability of outcomes to infer how well the internals
of a system are running. When you know some-
thing is wrong due to some symptom, only then
is it necessary to peel back the cover to see what
the cause may be. In mature, static systems with
known failure modes, cause-based alerting made
sense when teams could identify and understand
key bottlenecks. However, with more ephemeral,
dynamic, and abstracted systems, new failure
modes appear as systems continually change,
and the value of identifying specific infrastruc-
ture “causes” has become increasingly irrelevant.
As such, understanding the final symptoms and
outcomes is the practical benchmark to mea-
sure against.

Tracking system outcomes in practice

So what does it mean to “track symptoms?” While
it’s easy to only focus on the number of 9s in your
99.999% uptime SLA, that doesn’t capture the actual
outcomes your systems generate for your customers
and your business. Being able to connect “10 min-
utes of outage” to “1,200 lost orders” and “$24,000 in
revenue loss” provides a much more strategic mea-
sure of how your systems impact your business.

From there, drilling into your underlying services
and systems can help connect the true cost of the
database crash that led to the outage.

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://cloud.google.com/
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html

Effective Alerting in Practice

06

Alerting Design Principles

A lot has been written about alerting policy design,
including Rob Ewaschuk’s Philosophy on Alerting,
which served as the foundation for Monitoring
Distributed Systems: A case study in how Google
monitors its complex systems. With that in mind,
here are some guidelines to keep in mind when
designing your alerts:

• Consider quality over quantity. Confident
teams often have sparser, higher quality, and
more meaningful alert policies. Teams with less
confidence in their alerting strategy often have
a “hoarder mentality” and accumulate low-
quality alert policies that end up being noisy
and less useful.

• Create actionable pages. Quality alert
policies are actionable and meaningful. Pages
should present situations that require active
engagement and response; otherwise, they
create needless noise and alert fatigue. Many
alert systems function as a constant stream
of non-actionable notifications—if nothing is
wrong, there shouldn’t be any noise from alerts.

• Embrace incident correlation and AIOps
to reduce noise and diagnose faster. AIOps
technology can provide actionable context
to help you prioritize alerts and focus on what
matters most. This can include automatically
ingesting incident events from multiple sources,
grouping and correlating related events, and
enriching your incident data with valuable
context, including classifying the incident
based on signals such as traffic, errors, latency,
or saturation. Context can also point to the

components that may be failing and even
provide suggestions for who on your team
should respond.

• Determine if upstream dependencies are
actionable or informational. If there is a failure in
an upstream dependency, your team may not be
able to do anything about it since they don’t own
the dependency. In such cases, an informational
broadcast is more appropriate. However, if there
is something that the team can do to mitigate
the impact of the upstream dependency, a page
is appropriate. AIOps technology can help by
surfacing insights about which components
failed and the services to which they relate.

• Prioritize notifications sent by humans. Humans
have an understanding of their systems that
automation can’t provide. If a human sends a
notification, such as a support person surfacing
an issue, prioritize it.

• Invest in alerting automation. As a corollary to
prioritizing human notification, automate your
policies, notification channels, and incident
tracking. The time you spend doing this upfront
will save you time later during an actual outage.

• Create shared knowledge by documenting
learning. Make sure all your team members
understand your incident response policies,
and document troubleshooting steps to foster
shared knowledge and help prevent similar
types of incidents from occurring in the future.
AIOps technology can help by learning from your
data and past experience and automatically
surfacing recommendations the next time a
similar event occurs.

https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit?usp=sharing
https://www.oreilly.com/ideas/monitoring-distributed-systems
https://www.oreilly.com/ideas/monitoring-distributed-systems
https://www.oreilly.com/ideas/monitoring-distributed-systems

Effective Alerting in Practice

07

Creating an Alerting Strategy

Base your alerting strategy on system profiles,
metrics, and service level objectives (SLOs).

Profiling and prioritization

In your systems, different services behave dif-
ferently—and your alert policies should behave
differently as well. Here are three considerations
for profiling your systems:

• System architecture. A client-server architec-
ture runs very differently than a message-bus
architecture. Find the appropriate bottlenecks
where alerting should be targeted depending
on your system’s architecture.

• Purpose of system. The most important trans-
actions in an e-commerce cart are very dif-
ferent from the most important transactions in
an HR management system. Prioritize the most
important parts of your system to alert on.

• Expectations of system. A mission-critical cus-
tomer portal has much higher availability and
performance needs compared with an internal
testing service. Set alert prioritization where you
most expect high functionality.

Triage your alerting setup accordingly: Identify your
most important systems; understand the most
important outcomes from those systems; set up
alerting in those areas; and then work your way
down the list to mature your alerting coverage.

Alert metrics for your entire stack

In some organizations, DevOps teams are typically
responsible for metrics related to their technology
stack and its uptime, but they might not necessarily

be responsible for the technology’s corresponding
business impact. However, more advanced teams
have been able to quantify business impact, which
they in turn use to build business cases for invest-
ments and prioritization. If your organization is
mostly focused on technology-oriented metrics,
adding business/customer-oriented alerting and
monitoring can serve as a good “smoke test” for
whether your systems are delivering value to your
business and customers.

Here are some example metrics to monitor and
alert against. These will vary based on the needs
of the business and the services you operate, and
you should tune them accordingly.

Customer experience and business metrics

• Mobile app launches

• Traffic throughput

• Successful user story scripts (for example, login
or e-commerce purchase)

• Revenue processed

• Impressions and ad clicks

End-user technology metrics

• Page load time

• Mobile crashes

• JavaScript errors

• Ping checks

• Scripted check through key user processes

Effective Alerting in Practice

08

APIs and services alerting

• API service

• Transactions

• Service latency

• Uptimes

• Throughput

Infrastructure orchestration

• Pod health

• Instances

• Containers

• Network routing

Infrastructure components

• CPU

• RAM

• Disk I/O

• Storage

Create metrics from SLOs

If you don’t have a ready list of metrics, you could
also use service level objectives (SLOs) to create
a set of metrics and KPIs that reflect the priorities
of your team and organization, and track and alert
on those.

For example:

• Are we open for business? New Relic Synthetics,
New Relic Browser, and New Relic APM can all be
used to alert on site reliability.

• How is the health of our distributed services?
Set KPIs based on the Four SRE Golden Signals.
Track latency, traffic, errors, and saturation.

• What is the performance of our application?
Track metrics for JVM performance, queuing,
caching, and similar dependencies.

• How is the overall quality of our application?
Use an Apdex score to quickly access an appli-
cation’s quality.

• How are our customers doing? Consider real
end-user metrics (Browser/APM) and synthetic
users (Synthetics), and Apdex scores.

• How’s our overall business doing? Focus on key
transactions within an application, and tie the
results to expected business outcomes to illus-
trate correlation between your application and
business performance.

For a more in-depth practitioner tutorial on how to
do this in New Relic, check out this tutorial in our
Guide to Measuring DevOps Success.

Organizational strategies for alert policies

As your environment grows, the number of alert
policies you have can grow quickly, so creating
a naming convention for your alerting strategy can
make it significantly easier to manage them. While
there are many naming approaches you could
use, be sure to use one that reflects your team
or system priorities.

Consider the following organizational strategies:

Organized by name/team

• Aspen | Critical Alert | PROD

• Aspen | Minor Alert | PROD

• Aspen | Critical Alert | QA

• Aspen | Minor Alert | QA

• Birch | Critical Alert | PROD

• Birch | Minor Alert | PROD

• Birch | Critical Alert | QA

• Birch | Minor Alert | QA

https://en.wikipedia.org/wiki/Service_level_objective
https://newrelic.com/products/synthetics
https://newrelic.com/products/browser-monitoring
https://newrelic.com/products/application-monitoring
https://docs.newrelic.com/docs/set-proactive-alerting
https://docs.newrelic.com/docs/using-new-relic/welcome-new-relic/measure-devops-success/guide-measuring-devops-success

Effective Alerting in Practice

09

Organized by environment

• Prod | Aspen | Critical

• QA | Aspen | Critical

• Dev | Aspen | Critical

• Prod | Birch | Critical

• QA | Birch | Critical

• Dev | Birch | Critical

Organized by system type

• App | Aspen | Prod

• App | Birch | Prod

• DB2 | Cedar | Prod

• LDAP | Dogwood | Prod

• DB2 | Fir | Prod

Organized by application tier

• App | Aspen | Prod

• App | Birch | Prod

• Data | Mongo | Prod

• Data | DB2 | Prod

• Mgmt | LDAP | Prod

• Mgmt | Registry | Prod

Organized by infrastructure region

• Aspen | us-east-1 | Prod

• Aspen | eu-central-1 | Prod

• Aspen | ap-southeast-2 | Prod

• Birch | us-east-1 | Prod

• Birch | eu-central-1 | Prod

• Birch | ap-southeast-2 | Prod

By mixing and matching the conventions and
delimiters, you can create a naming template for
your teams to follow:

Template: {team_name}: {environment: Production |

Staging | Development} - [{region: US | EU | AP}] -

{description: service | service-group | functional-

ity}- {type: OnCall | Shadow | Warning}

Examples:

• Interface: Production [EU] - Metric Index-
ing - OnCall

• AIS: Production [US] - Pipeline I/O - OnCall

• Pipeline: Staging [EU] - Cassandra I/O - OnCall

• API: Production [AP] - Partner Service - Warning

• Portal: Production [US] - Monitors SLA - OnCall

In addition to these alerting policies used across
teams, individuals may want to set up their own
alerts if they want to track a particular resource or
metric. These policies should include the person’s
name to make them easier to identify.

• User | Samantha Martinez | API

• User | Josh Tran | Prod

• User | Michelle Jones | Spark

Effective Alerting in Practice

10

Alerting for Dynamic
and Scaled Environments

Dynamic environments in which systems con-
stantly change may need additional strategies for
scalable alert management beyond naming con-
ventions. As your systems scale, it’s important that
new apps receive your core set of alerts and that
you correctly apply alerting changes across the
right set of systems—which can be difficult if your
systems keep changing.

Here are some methods for handling alerts in
dynamic environments:

Use labels across environments

By labeling apps and systems, you can dynamically
target alerts against these labels and ensure that
new systems automatically inherit any default alert
policies. For example, adding a “production” label
to an app deployed into your production environ-
ment ensures that app will automatically receive all
the alerts associated with the production label and
environment. Additionally, if you modify a policy
under the “production” label, those changes are
propagated across all the labeled apps, which is
significantly more reliable than manually updat-
ing the policies for each app.

Manage alerts with APIs

APIs provide a way to automate the creation, mod-
ification, and management of alerts. If you use an
infrastructure automation tool like Puppet, Chef,
Ansible, or Terraform, connect your alerting API
endpoints into these systems to ensure that alert
policies are programmatically created alongside
the resources you provision with these tools.

Define your alerting as code

Another way to automate your alerting system is
to define all your alerts as code. In the same way
infrastructure-as-code has changed the way
teams approach provisioning, configuring, and
managing infrastructure, alerts-as-code brings
another level of control around highly scaled alert-
ing systems (and the highly scaled systems they
monitor). Alerts-as-code has many advantages:
You can check it into source control for version-
ing and backup; it can serve as a documented
reference; and you can more easily standardize it
across your systems. While some work is needed to
programmatically build out your alert policies, the
gains from the improved automation are often well
worth the time, especially for the most dynamic
and complex systems.

https://blog.newrelic.com/2017/03/29/alerts-dynamic-targeting-apps/
https://blog.newrelic.com/2017/03/29/alerts-dynamic-targeting-apps/
https://docs.newrelic.com/docs/alerts/rest-api-alerts/new-relic-alerts-rest-api/rest-api-calls-new-relic-alerts
https://puppet.com/
https://www.chef.io/chef/
https://www.ansible.com/
https://www.terraform.io/
https://github.com/ocadotechnology/newrelic-alerts-configurator

Effective Alerting in Practice

11

Managing Different Alerting Sources

According to a study conducted by Forrester, the
typical enterprise has approximately 12 different
data types that it monitors across multiple sources,
yet many still have challenges with siloed data and
gaps in their system visibility. Many factors contrib-
ute to this proliferation of data, including siloed and
independent business units, differing supported
technologies across teams, company acquisitions,
and point solutions.

That’s where AIOps technology can help by
enabling on-call teams to harness AI and machine
learning (ML) capabilities so they can prevent more
incidents and respond to them faster. AIOps uses
AI and ML to analyze data generated by software
systems to predict possible problems, determine
the root causes, and drive automation to fix them.

AIOps complements the value you get from mon-
itoring by providing an intelligent feed of incident
information alongside your data, and applying AI
and ML to analyze and take action on that data
more quickly, so you can find, troubleshoot, and
respond to incidents faster.

AIOps can help in four main ways:

1. Proactive detection of anomalies before an
issue hits production or impacts customer
experience or SLOs.

2. Noise reduction to help teams prioritize alerts
and focus on the issues that matter most, by
correlating related incidents and enriching
them with metadata and context.

3. Intelligent alerting and escalation to
automatically route incidents to the
individuals or teams who are best equipped
to respond to them.

4. Automated incident remediation, which
includes workflows to resolve the incident when
it occurs and reduce mean time to resolution
(MTTR).

https://blog.newrelic.com/2018/03/19/forrester-digital-insights-leadership/
https://newrelic.com/devops/how-to-reduce-mttr
https://newrelic.com/devops/how-to-reduce-mttr

Effective Alerting in Practice

12

Making Alerting Work for Your Team

Alerting is ultimately only useful if teams actually
leverage the alerts. Many of the challenges com-
panies encounter with alerting are often a reflec-
tion of larger issues within their organization. The
workflows and processes that comprise your alert-
ing system are vital for not only the effectiveness of
your alerting, but also for the effectiveness of your
DevOps health and culture.

With that in mind, here are some ways to focus on
the human side of alerting:

• Be people first. Your alerting system serves your
team, not the other way around. If someone on
call finds that an alert needs tuning, they should
feel empowered to adjust it accordingly. There
are real human costs to repeated 2 a.m. pages.
Balance the severity of issues and create
guidelines to protect the well-being of your
teams as part of your alerting culture.

• Put your customers before your technology.
Focus on your customer impact and business
outcomes. Use your SLOs to understand
how your work impacts your end users. Your
customers don’t care how slick your technology
stack is; they only care if they can successfully
use your service.

• Find and resolve underlying issues. Alerting
incidents can really test how well your
organization functions. Do you have a single
team member who is constantly being paged?
Do you need more robust cross-training? If
there are systemic quality issues, you may have
problems in your development or acceptance
testing processes. Running exercises like

blameless retrospectives and 5 Why’s can help
drive improvements. As the saying goes, “Never
let a crisis go to waste.”

• Groom, review, and tune your alerts. In the
same way that you groom ticket backlogs,
groom your alerting policies from time to time
to ensure their relevance and effectiveness.
Make alerting reviews a regular part of sprint
reviews and standups to ensure their usage
and effectiveness. Be sure to identify which
alerts are firing more frequently, the causes
for that behavior, and the necessary system
remediation or alert tuning required.

• Removing alerts when you can. Part of the
grooming process is pruning alerting deadwood.
Incident retrospectives often involve adding
more alerts, but this is also a key opportunity

Alert Usage
• Send alert data to Insights
• Build visualizations
• Use correlations and context

Alert Review
• Review metrics (e.g., MTTR)
• Examine noise level
• Review policies
• Suggest improvements

Alert Configuration
• Base on SLAs
• Consider your team’s experience
• Use historical data from your AIOps tool

1.

2.

3.

Alert
Improvement

Process

Figure 1.

https://en.wikipedia.org/wiki/5_Whys

Effective Alerting in Practice

13

to remove duplicate or ineffective alerts. Use
an alert improvement process [Fig 1.] to identify
which alerts were most actionable during a real
incident, so that others can be downgraded to
informational warnings or removed completely.
AIOps technology can help by automatically
correlating related incident events and alerts,
suppressing alerts that will auto-resolve or
are low priority, providing automatic flapping
detection, and providing critical intelligence
and context about your incidents to help you
diagnose and resolve them faster.

• Apply muting rules for maintenance windows
and planned downtime. In times of planned
system disruptions, a steady stream of noisy,
unnecessary alerts can be a major distraction.
Your alerting system should support muting
rules to make it possible to override alert policies
and conditions you’ve defined, so you can take
more control over your alerts and suppress
notifications during times of known system
disruptions, such as maintenance windows,
deployments, and during testing.

Effective Alerting in Practice

14

Incident Response Lifecycle Framework

What happens after an alert is raised? What pro-
cess does your team use to manage incidents? The
following framework can help you plan through
the lifecycle of an incident:

1. Configure. Set up monitoring, AIOps, and
alerting services on your systems, including
access, audit, anomaly detection, event
correlation, automation, and coverage policies.

2. Detect. An incident is automatically detected
as a result of ingested telemetry, and it is
modeled, analyzed, and forwarded through the
appropriate notification channels, including to
collaboration tools like Slack.

3. Combine & Refine. Alerts and telemetry are
analyzed, correlated, and enriched with
metadata and context to create a single,
actionable incident that is used to diagnose
and troubleshoot the issue and get closest to
root cause.

4. Triage & Assign. Understand and prioritize
different root causes in context to determine
the next steps for resolution, and route
incidents to the individuals and teams best
equipped to respond to them with the help
of AIOps capabilities such as suggested
responders.

5. Remediate. Execute the resolution of the issue,
including scheduling, routing, development,
testing, escalation, and collaboration.

6. Retrospect. Review the incident to expand
organizational robustness and prevent future
problems with analytics, post mortems, and
process changes.

When you establish your incident management
process, you must detail how your teams are to
prepare, execute, and follow up on incidents, leav-
ing room to improve the process continually. With-
out a cycle of improvement, teams will perpetually
be behind the curve on incidents as your systems
increase in complexity and frequency of issues.

Effective Alerting in Practice

15

Next Steps

Creating an effective alerting system can bring
significant leverage to your DevOps culture and
help you have greater confidence that your sys-
tems are running smoothly and as expected. We
encourage you to get alerts up and running on
your systems, and to revisit your existing alerts to
ensure they’re effectively helping your teams. At a
minimum, we encourage you to:

• Identify a key set of systems that are mission-
critical to your business.

• Set up alerts on these systems, and review
existing alerts for effectiveness.

• Review your incident lifecycle process, such as
with a game day or as part of any active incident
retrospective.

• Embed alerting reviews and tuning as part of
your ongoing standup or sprint process for
iteration and improvement.

If you’re looking for more information about Alerting
with New Relic, we’re here to help. New Relic Univer-
sity and our New Relic Alerts documentation have
guidance and tutorials on getting more from our
alerting services. And our AIOps solution, New Relic AI,
empowers your team with intelligence and automa-
tion to detect, diagnose, and resolve incidents faster.
You can also find additional tips for getting started
with alerting on New Relic with this checklist. For even
more guidance, our expert services team can help
you get your alerting system up and running.

The New Relic platform was designed to find, fix,
and optimize problems across your full technology
stack. Our modern alerting system was designed
to help you sleep better at night knowing that
everything is running smoothly.

Successful DevOps starts here

Measure what matters and innovate faster.

Get started

https://learn.newrelic.com/
https://learn.newrelic.com/
https://docs.newrelic.com/
https://newrelic.com/products/applied-intelligence
https://try.newrelic.com/rs/newrelic/images/NewRelicAlerts_Checklist_FINAL.pdf
https://newrelic.com/expertservices
https://newrelic.com/devops

	Introduction
	Modern Technology Stacks: Affecting Alerting Through Challenges and Change
	Inherent challenges with alerting
	Changes in technology affect alerting
	System outcomes vs. root causes
	Tracking system outcomes in practice

	Alerting Design Principles
	Creating an Alerting Strategy
	Profiling and prioritization
	Organizational strategies for alert policies
	Alert metrics for your entire stack
	Create metrics from SLOs

	Alerting for Dynamic and Scaled Environments
	Use labels across environments
	Manage alerts with APIs
	Define your alerting as code

	Managing Different Alerting Sources
	Making Alerting Work for Your Team
	Incident Response Lifecycle Framework
	Next Steps

