
Adopt,
Experiment,
and Scale
Core Capabilities for
Cloud Native Success

Table of Contents
Introduction 03

Three Core Capabilities for Cloud Native Success 04

Adopt new technologies easily 04

Promote a culture of experimentation, and do it confidently 06

Track metrics before and after deployments 08

Scale your application—from the underlying host to the customer experience 10

Conclusion 13

03New Relic: Adopt, Experiment, and Scale

Introduction
Startups today often brag that they were “born in the
cloud.” As legacy organizations modernize, they too are
adopting the cloud rapidly, eager to take advantage of
the flexibility, resiliency, and time-to-market their cloud
native peers enjoy. Whether your organization was born
in the cloud or not, your team is likely prioritizing a cloud
native mindset.

While many organizations are somewhere in the process of defining and
optimizing their cloud approach, there’s still a fair amount of confusion
among IT practitioners and decision makers about what “cloud native”
really means, and what the ultimate goals and expectations should be
for an organization leveraging modern technologies and practices.

Whether you’re just getting started or are well underway on your cloud
native journey, this ebook presents three prescriptive technical and cul-
tural capabilities essential for optimizing your cloud native environment.

04New Relic: Adopt, Experiment, and Scale

Adopt new technologies easily
The rate at which cloud providers unveil new services and technologies
can be staggering. You must be able to evaluate and adopt new ser-
vices with ease and confidence. You also need visibility and data-driven
insights to accelerate the pace of application releases and achieve
measurable business objectives. To optimize your cloud native environ-
ment, you need to:

• Define SLOs for your cloud native environment

• Adopt modern technologies and cloud services

• Migrate to microservices

DEFINE SLOs FOR YOUR CLOUD NATIVE ENVIRONMENT
An optimized cloud native environment requires a cultural shift—one that
enables teams to build new skills and motivations for the type of cross-
team work required in distributed, modern cloud environments. The
transformation can be difficult if the people involved don’t clearly see
the benefits of change.

Service-level objectives (SLOs) are a powerful mechanism for codifying
team goals in a way that stakeholders can measure and share. An SLO is
an agreed-upon means of measuring the performance of an applica-
tion or microservice within an application. The SLO defines a target value
for a specified quantitative measure, which is called the service-level
indicator (SLI); for example:

1. Adopt easily. Get the visibility and
data-driven insights your teams need
to make smart architecture decisions,
from deciding which services to adopt
to understanding how to break down
your monolith into microservices.

2. Experiment confidently. Deploy
new features and fixes and get fast
feedback so you can find errors in
your complex, distributed environment
before your customers do.

3. Scale better. Leverage the contextual
data required to automate and grow
your services efficiently across your
entire stack, from the hosts that support
your applications to the individual
customer experiences they enable.

Three Core Capabilities
for Cloud Native Success

https://medium.com/cloudpegboard/how-many-aws-services-are-there-51dda44fa946
https://en.wikipedia.org/wiki/Service-level_objective

05New Relic: Adopt, Experiment, and Scale

• (SLI) = average response time (SLO) = should be less than 200 ms

• (SLI) = 95% of requests (SLO) = should complete within 250 ms

• (SLI) = availability of the service (SLO) = should be 99.99%

As such, SLOs provide clear boundaries on service expectations, offering
greater velocity and freedom to teams that are experimenting with new
approaches, especially in cloud native environments.

Effectively setting SLOs and SLIs for a modern, complex system is a
multistep process that includes:

• Identifying system boundaries within your application

• Defining the capabilities of each system

• Measuring performance baselines

• Defining an SLI and applying an SLO for each capability, and then
iterating on those settings over time

Using SLIs as key performance indicators (KPIs) can help you ensure your
app meets customer expectations. Further, measuring the current state
of your service or application’s reliability provides clear visibility into
your cloud native environment. Such measurements allow you to focus
on resolving meaningful performance gaps as you assess future cloud-
based optimization efforts.

ADOPT MODERN TECHNOLOGIES AND CLOUD SERVICES
Whether you’ve recently completed your cloud migration, have been
using cloud-based services for a while, or have always been in the cloud,
you’ve likely deployed some modern, cutting-edge technologies and
services. It’s important that you adopt new services easily and with confi-
dence. Innovation never stops for a company operating in the cloud, and
a company’s effectiveness at embracing new platforms can be a major
competitive advantage.

The cloud is abundant with modern technologies. A vast majority of
cloud native teams run some sort of container solution such as Docker,
Kubernetes, AWS Elastic Container Service (ECS), or Fargate, for exam-
ple. More advanced teams run serverless services such as AWS Lambda,
Microsoft Azure Functions, or Google Cloud Functions. And there is no
shortage of cloud-based databases and other services that abstract the
service away from an operations-maintained infrastructure.

To excel in the cloud, it’s essential that you can monitor, query, and alert
on the performance and usage metrics for both modern technologies
and cloud-based services. This allows you to deploy faster, to adopt
new services with confidence, to make better business decisions, and to
expand your technological horizons.

MIGRATE TO MICROSERVICES
As IT and operations departments seek to optimize their applications,
they’re decomposing application monoliths into microservices. A micro-
service architecture is an approach that delivers a single application
as a suite of small services, each running in its own process and com-
municating with lightweight mechanisms, such as HTTPs. Following a
service-oriented architecture (SOA) model, each service offers its API
interfaces to any other service in the environment.

Fragmenting applications into their most basic services enables the
continuous delivery/deployment of large, complex applications by
removing barriers and silos that previously lengthened the application
release cycle. It’s been well-documented that elite DevOps performers
release software multiple times per day. With microservices-based
applications, organizations can evolve their technology stacks for mod-
ern cloud environments and operate at cloud scale. With microservices,
you can build, manage, scale, and reuse services independently; resolve
issues faster; increase the rate of deployments; and ultimately deliver
an enhanced end-user experience.

https://blog.newrelic.com/engineering/best-practices-for-setting-slos-and-slis-for-modern-complex-systems/
https://www.docker.com/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://www.zdnet.com/article/devops-leaders-deliver-software-200-times-more-frequently-than-their-peers-study-shows/

06New Relic: Adopt, Experiment, and Scale

In order to determine which components of an application can be bro-
ken into microservices, you must deploy instrumentation on all tiers
and components of the target application. Afterward, you’ll be able
to determine baseline application performance, quantify transaction
volumes, and gather other key metrics that will inform the plans for
your microservice journey.

Compare application performance before and after migrating to microservices.

Promote a culture of experimentation,
and do it confidently
As with any innovation, it’s not just about the technology. Updating pro-
cesses and teaming practices is essential to the long-term success of
technology modernization. Promote a culture of experimentation in your
complex, distributed systems so your teams can experiment confidently,
troubleshoot errors, and create measurable results. Specifically, mobilize
around a solution that will enable your teams to:

• Set up proactive alerting and incident orchestration

• Measure the impact of deployments

• Analyze distributed systems

SET UP PROACTIVE ALERTING AND INCIDENT RESPONSE
Proactive alerting strategies enable you to respond to problems before
they affect your customers. A great place to start with alerting is with
your team’s SLOs. In fact, you can group SLOs together logically to pro-
vide an overall Boolean indicator of whether your cloud-based service
is meeting expectations or not—for example, “95% of requests complete
within 250 ms and service availability is 99.99%”—and then set an alert
against that indicator.

By breaking down the quantitative performance metrics of a cloud-
based service or technology, you can identify the most appropriate alert
type for each metric. For instance, you could set an alert to notify on-call
responders if web transaction times exceed a half-millisecond, or if error
rates surpass 0.20%.

For a simple alerting framework, consider the following table:

Question Metrics and KPIs

Are we open
for business?

Use synthetic monitoring to set up auto-
mated pings and alert on availability.

How’s our underly-
ing infrastructure?

Manage and troubleshoot your hosts and con-
tainers with infrastructure-based monitoring.

How’s the health of
our application?

Use real end-user metrics to understand your
application’s backend performance. Use met-
ric and trace data from open source tools, and
display that information alongside all the other
systems and services data you’re managing.

How do I trouble-
shoot a system error?

Use logs or distributed tracing to search
and investigate the root cause across
your applications and infrastructure.

How’s the over-
all quality of our
application?

Use an Apdex score to quickly
assess an application’s quality.

How are our
customers doing?

Monitor front-end and mobile user experiences.

How’s our overall
business doing?

Focus on key transactions within an application
and tie them to expected business outcomes to
correlate application and business performance.

Alerting without the proper broadcasting methods leaves you vulnerable.
Your alerting strategy should include a notification channel to ensure the
appropriate teams are notified if your application or architecture
encounters issues.

We recommend that you first send alerts to a group chat channel (for
example, using Slack or PagerDuty). Avoid alert fatigue by evaluating
alerts in real time for several weeks to understand which alerts are indic-
ative of important or problematic issues. These are the types of alerts
that warrant waking up someone.

Make sure that communications during critical incidents take place in
easily accessible and highly visible channels. A group chat room dedi-
cated to incident communication is often a great choice. This allows all
stakeholders to participate in or observe conversations, and it provides
a chronology of notifications, key decisions, and actions for postmortem
analysis.

Automation of simple or repeatable incident response tasks will increase
efficiency and minimize the impact of incidents. With proper automation
in place, you can disable or isolate faulty application components as
soon as an alert threshold is reached, rather than after a notification has
been issued.

Finally, after the incident has been resolved, key stakeholders and partici-
pants must capture accurate and thorough documentation of the incident.

At a minimum, we recommend that the documentation for the incident
retrospective includes:

• A root-cause analysis

• A chronology and summary of remediation steps, their results and
whether they were successful or not

• A measure of the impact to the business in terms of user experience
and financial losses, if applicable

• Recommendations for system or feature improvements to prevent
a recurrence

• Recommendations for process and communication improvements

07New Relic: Adopt, Experiment, and Scale

https://blog.newrelic.com/engineering/synthetic-versus-real-user-monitoring/
https://docs.newrelic.com/docs/apm/new-relic-apm/apdex/apdex-measure-user-satisfaction
https://docs.newrelic.com/docs/apm/transactions/key-transactions/introduction-key-transactions

08New Relic: Adopt, Experiment, and Scale

Track metrics before and after deployments
Proper instrumentation gives you full visibility into the impact of the
changes you make in your cloud native environment. Capturing tangi-
ble, measurable metrics before and after each deployment allows you
to optimize changes in isolation and reduce the impact to other work
occurring in your environment.

To effectively measure the impact of deployments, follow these steps:

1. Integrate measurements into your CI/CD process. With appropriate
measurements incorporated into all phases of your development
cycle, you can surface errors and performance issues before your
customers uncover them. As your application teams plan their work,
use your KPI in daily stand-ups and other planning meetings to ana-
lyze necessary debugging work, assess whether recent deployments
were successful, and prioritize other efforts.

2. Add automated deployment markers. It’s important to track deploy-
ments and the impact code and infrastructure changes have on your
end-user experience. A deployment marker is an event indicating
that a deployment happened, and it’s paired with metadata avail-
able from your source code management system (for example, the
user, revision, or change-log). These markers—and the associated
metadata—can be tracked on charts and graphs at the deployment
event’s time stamp.

Compare application performance before and after migrating to microservices.

3. Gather insights from your deployment pipeline. An important part of
optimizing your cloud native environment is making a cultural shift
toward smaller, more frequent changes to your code and infrastruc-
ture. Test and gather appropriate performance insights about your
deployment pipeline to more clearly understand the impact of the
changes you make. Code changes should be as small as possible
in terms of the number of lines of code and source files you change.
Changes should also involve as few team members as possible. This
makes it much easier to identify issue owners and determine root
causes when errors occur.

ANALYZE DISTRIBUTED SYSTEMS
In a monolithic application, a simple stack trace can contain enough
diagnostic data to determine the root cause of a code defect. But cloud
computing and microservices have blurred the lines between software
and infrastructure. In modern architectures, requests are distributed
across many smaller services—often with ephemeral lifespans—hosted
both in on-premises and in cloud environments. As such, spotting code
defects in cloud native environments becomes a much more complex
endeavor.

Monitoring solutions that support distributed tracing provide a wealth
of context when you need to troubleshoot distributed systems. But dis-
tributed traces are just one component of a well-monitored system. You
need a holistic view of your cloud native environment, especially when
tracking the root cause of a defect, as there are volumes of data to eval-
uate and understand. When managing microservices, it’s critical that
you have the capability to spot bottlenecks and problem spans quickly
so that you don’t compromise your mean-time-to-resolution (MTTR) or
end-user experience.

https://newrelic.com/devops/how-to-reduce-mttr

So, what should you measure? In Google’s ebook “Site Reliability Engineering: How Google Runs Production Systems,” the authors suggest using the “Four
Golden Signals” to measure and improve user-facing applications:

1 Latency: How responsive
is your application? 2 Traffic: How many

requests or sessions
are aimed at your
application?

3 Errors: How much traffic
is unable to fulfill its
requests or sessions?

4 Saturation: How are
resources being stressed
to meet the demands
of your application?

09New Relic: Adopt, Experiment, and Scale

https://landing.google.com/sre/books/

By focusing on metrics such as the “Four Golden Signals,” you’ll get proof
of measurable improvements that you can share throughout your orga-
nization to gain momentum on your cloud native journey.

Scale your application—from the underlying
host to the customer experience
As your cloud native system dynamically scales, maintaining control and
visibility into the resources you use and their impact on your budgets
becomes increasingly problematic. Once again, modern monitoring
plays a critical role. You need to proactively monitor nodes, deployments,
pods, and containers as well as the frontend and backend applications
to understand the custom experience and avenues for cost optimiza-
tions. To effectively scale your cloud applications, you must:

• Manage your containerized environment

• Improve customer experience

• Optimize your cloud architecture and spend to continuously improve
your cloud native environment

MANAGE YOUR CONTAINERIZED ENVIRONMENT
Widespread adoption of containers has changed the way applications
are written and deployed. Container orchestration technologies such as
Kubernetes are making it easier for teams to schedule, deploy, and man-
age their containerized applications. But three challenges still exist that
require teams to rethink their environment and application monitoring
strategies:

Challenge 1: Often, organizations adopt containers as they break down
monolithic applications into multiple microservices. This introduces new
complexity and the sheer scale and dimensionality of containers is hard
to conceptualize in an easy-to-understand format.

Challenge 2: Containers are ephemeral by nature and are deployed in
dynamic, constantly evolving environments. Your application might be
running in one container or pod or node—but a few minutes later, it could
be running in an entirely different container. A modern approach to mon-
itoring can help you keep track of such dynamic environments.

Challenge 3: Delivering a differentiated end-user experience is a key
initiative for all organizations, and many organizations are adopting
container-based workflows in order to release better software, faster.
But with this tremendous opportunity comes risk, because every time a
new container is deployed, the cluster is impacted. You need context into
how such infrastructure changes impact your application stack, and how
changes to both the infrastructure and application stack affect the end-
user experience. Getting all of this data in real time in a digestible format
is a significant challenge in distributed, containerized environments.

Intuitively investigate metrics, events, logs, and traces across your entire Kubernetes environment.

10New Relic: Adopt, Experiment, and Scale

Modern environments require modern monitoring. Teams need a plat-
form that enables them to drill down into Kubernetes data and metadata
in a high-fidelity, curated UI that simplifies complex environments. Such a
platform can help teams move beyond infrastructure metrics and inves-
tigate deeper into applications, traces, logs, and events—with a single
click—while staying grounded in a centralized UI. Containerized environ-
ments are complex, and with the right context, teams are empowered to
troubleshoot distributed environments faster.

IMPROVE CUSTOMER EXPERIENCE
An efficient, well-functioning cloud native environment enables organi-
zations to make rapid, frequent releases and product changes. Getting
observability into these environments enables you to share data about
your customer experience with other stakeholders, such as customer
service, support, sales, and marketing teams.

A single point of reference, such as a dashboard, brings together busi-
ness-level information alongside performance data—and makes it all
very easy for you to share across teams. When determining how or with
whom to share your dashboards, consider the following questions:

1. Which teams are responsible for applications that have high levels
of end-user interaction?

2. Which non-engineering teams could benefit from end-user analysis
that includes performance metrics?

 ° Customer support: Could customer issues be resolved faster?

 ° Product/engineering: Could product make more informed road-
map decisions?

 ° Customer success: Can this data be used to make customers
more successful?

 ° Others: Could other teams benefit from your dashboards?

Could customer issues
be resolved faster?

Could product make more
informed road-map decisions?

Can this data be used to make
customers more successful?

Could other teams benefit
from your dashboards?

A clear understanding of what creates a successful customer experi-
ence will help you drive greater efficiencies in your work efforts and, in
turn, deliver greater productivity.

OPTIMIZE YOUR CLOUD ARCHITECTURE
AND SPEND TO CONTINUOUSLY IMPROVE
YOUR CLOUD NATIVE ENVIRONMENT
In the cloud, it’s important to look regularly and closely at how your appli-
cations and services are architected and utilized. You need to identify
opportunities for right-sizing your instances, fine-tuning your databases,
modifying your storage usage, better configuring your load balancers, or
even re-architecting your applications.

For example, if you have a set of 20 instances all running at 10% CPU
usage, you might consider using smaller instances or consolidating
more work onto those instances. This kind of thinking about your cloud
utilization and spend will help you optimize your environment and justify
your cloud budget.

11New Relic: Adopt, Experiment, and Scale

Optimize your cloud architecture with three main goals in mind:

1. Improve performance, availability, and end-user experience by
taking better advantage of cloud services.

2. Optimize your cloud spend, striking the delicate balance between
cost and performance.

3. Capture business and technical metrics that support your current
cloud spend and can justify a larger cloud budget as growth dictates.

This dashboard shows data broken out by services and budgets, as set up in the AWS budgeting area.

12New Relic: Adopt, Experiment, and Scale

13New Relic: Adopt, Experiment, and Scale

Conclusion
Whether your organization was born in the cloud or has recently migrated
on-premises applications to the cloud, you likely still have plenty of work to
do to optimize your modern cloud environment.

An optimized cloud native environment will promote faster feature deliv-
ery, fewer incidents, more experimentation, and competitive advantage.
Our prescriptive guide to Optimizing Your Cloud Native Environment—
written by New Relic solutions engineers and cloud experts—provides
details about how you can use New Relic to track every step of your cloud
native journey and increase the odds of your success.

New Relic’s flexible and scalable platform helps you manage, trouble-
shoot, and optimize distributed systems with ease. From overall system
health metrics down to individual distributed traces, we give you real-
time insights across every aspect of your dynamic environment. Leverage
modern cloud tools with confidence and stability to push your business
forward, faster.

Deliver more perfect software

Try New Relic One today and start building better, more resilient software
experiences. Learn More

An optimized cloud native environment
will promote faster feature delivery,

fewer incidents, more experimentation,
and competitive advantage.

https://docs.newrelic.com/docs/using-new-relic/welcome-new-relic/optimize-your-cloud-native-environment/guide-optimizing-your-cloud-native-environment
https://newrelic.com/platform

©2008-20 New Relic, Inc. All rights reserved. 05.2020

	Introduction
	Three Core Capabilities for Cloud Native Success
	Adopt new technologies easily
	Promote a culture of experimentation, and do it confidently
	Track metrics before and after deployments
	Scale your application—from the underlying host to the customer experience

	Conclusion

	Button 16:
	Button 15:
	Button 14:
	Button 13:
	Button 12:

