Back to top icon

M.E.L.T. 101

An introduction to the four essential telemetry data types

Contact us

Introduction

Observability has transformed the world of monitoring, and for good reason. Thanks to an abundance of available tools, it’s easier than ever to ship code, but that also means software environments are more complex than they’ve ever been. As our software development practices have evolved, so have our systems. It’s no longer enough to ask if something is wrong in our software stack; we must now also ask why. This is the fundamental function of observability.

To achieve observability, you need to instrument everything and view all your telemetry data in one place—and there are plenty of ongoing debates about the best ways to do this. At New Relic, we believe that metrics, events, logs, and traces (or M.E.L.T. for short) are the essential data types of observability. When we instrument everything and use M.E.L.T. to form a fundamental, working knowledge of connections—the relationships and dependencies within our system—as well as its detailed performance and health, we’re practicing observability.

If you’re just getting started with observability, though, the full value of M.E.L.T. might not be totally clear. There’s a good chance you’ve heard these terms before, but can you confidently describe the differences between them?

Starting with a simple vending machine as a reference, this guide will walk you through an explanation of metrics, events, logs, and traces, and will demonstrate:

  • How they differ from one another

  • How to know when to use one versus another

  • How they’re used in New Relic One, the first observability platform

     

 

Note that we start with events because they are the most critical data type for observability. Events are distinct from logs—they are discrete, detailed records of significant points of analysis but provide a higher level of abstraction than the details provided by logs. Alerts are events. Deployments are events. So are transactions and errors. Events provide the ability to do fine-grained analysis in real time.

 

Part 1: Events

An event is a discrete action happening at a moment in time. So, to start with our vending machine analogy, we could define an event to capture the moment when someone makes a purchase from the machine: 

At 3:34pm on 2/21/2019 a bag of BBQ chips was purchased for 1 dollar.

Here’s what this event data could look like stored in a database:

sample event data stored in database

We could also define events for actions that do not include a customer, such as a vendor refilled the machine, or for states that are derived from other events, like an item becoming “sold out” after a purchase. Something to drive home that events are just about “something happened at some time.”

You can choose which attributes are important to send when defining an event. There’s no hard and fast rule about what data an event can contain—you define an event as you see fit. In New Relic, for example, all events have at least a Timestamp and an EventType attribute.

How are events used?

Events are valuable because you can use them to validate the occurrence of a particular action at a particular time. For example, we may want to know the last time our machine was refilled. Using events, we can look at the most recent timestamp from the Refilled event type and answer this question immediately.

Since events are basically a history of every individual thing that happened in your system, you can roll them up into aggregates to answer more advanced questions on the fly.

Continuing our PurchaseEvent example from above, imagine that we had the following events stored:

sample event data stored in database

A reasonable question we may want to ask of this data is, How much money have I made this week?

Well, since we have a history of every purchase event stored, we can simply sum the Value column and see that we’ve made $4.25.

Events become more powerful when you add more metadata to them. For example, we could add additional attributes, such as ItemCategory and PaymentType, so we could run faceted queries against our PurchaseEvent data.

sample event data stored in database

Now we can ask questions like:

  • How much money did I make off of each item category? (Snacks: $2.75, Drinks: $1.50)

  • How often do people use different payment types? (Cash: 3, CreditCard 1).

  • How much money did I make per day? (2/21: $2.00, 2/22: $0.75, 2/23: $0, 2/24: $1.50)

Example: Using events in New Relic

In this example, let’s say we’re a telco company and have multiple customers reporting crashes in our mobile application, “ACME Telco - Android”, and it’s time to do some analysis.

Since we’ve deployed the New Relic Mobile agent, which captures crash data for any app it’s monitoring, we can access the raw underlying MobileCrash event data in New Relic.

In the New Relic One chart builder, we’ll run the following query:

SELECT * FROM MobileCrash

Each row in the following table corresponds to a specific crash event that occurred for a particular user at some point.

sample mobile crash event table

Now, let’s say we wanted to ask more useful questions about this data. For example, we might want to know if our app was crashing more often on a particular manufacturer’s devices over the last day.

Here, we’d run the following query in chart builder:

SELECT count(*) FROM MobileCrash WHERE appName = 'Acme Telco -Android' FACET deviceManufacturer SINCE 1 day AGO

From the results, we can see pretty clearly that the particular application has failed almost three times more often for Manufacturer A’s line of devices in the last day.

mobile application crash by device example

Limitations on events

You may be thinking events sound awesome (“Let’s collect one of everything that happens all the time!”). Well, event collection comes with a cost. Every event takes some amount of computational energy to collect and process. They also take up space in your database—potentially lots of space. So for relatively infrequent things, like a purchase in a vending machine, events are great, but we wouldn’t want to collect an event for everything the vending machine does. For example, let's say that you want to keep a history of the temperature in the vending machine. You could store an event for every minuscule, sub-degree shift in temperature, which would quickly fill up even the largest databases. Or you could instead take a sample of the temperature at a regular interval. This kind of data is better stored as a metric.

Part 2: Metrics

To put it simply, metrics are an aggregated set of measurements grouped or collected at regular intervals. Unlike events, metrics are not discrete—they represent aggregates of data over a given time span. 

The types of metric aggregation are diverse (for example, average, total, minimum, maximum, sum-of-squares) but all metrics generally share the following traits:

  • A timestamp (note that this timestamp represents a timespan, not a specific time)

  • A name

  • One or more numeric values representing some specific aggregated value

  • A count of how many events are represented in the aggregate

A specific example of a metric might look like this:

For the minute of 3:34-3:35pm on 2/21/2019 there was a total of three purchases totaling $2.75.

This metric would be represented in a database as a single row of data:

sample event data stored in database

You’ll often see multiple values calculated in a single row to represent different metrics that share the same name, timestamp, and count; in this case, we’re tracking both the Total purchase value as well as the Average purchase value.

Notice that we’ve lost some data here compared to an event. We no longer know what the specific three purchases were, nor do we have access to their individual values (and this data cannot be recovered). However, this data requires significantly less storage but still allows us to ask certain critical questions like, “What were my total sales during any given minute?”

At a practical level, this is the primary difference between metrics and events, but we can take a closer look at the pros and cons of each.

Metrics vs. Events

So, what are the pros and cons between metrics and events?

Events

chart listing pros and cons of events

Metrics

chart listing pros and cons of metrics

Metrics work well for large bodies of data or data collected at regular intervals when you know what you want to ask ahead of time. Events are useful when the data is relatively small or sporadic in nature, or when you don’t know the specific aggregates you want to see ahead of time.

Example: Using metrics in New Relic

In New Relic, the best example of metrics data are error rate, response time, and throughput:

dashboard showing sample error rate, response time, and throughput

In the above screenshot, we see a 12-hour window for an application called “WebPortal.” Notice how all the lines are very jagged? This implies a higher level of fidelity in the data. Now let’s look at another 12-hour window for the same metrics, captured two weeks ago:

dashboard showing second example of error rate, response time, and throughput

Notice how the lines have smoothed out? This is because the metrics have been further aggregated over time. When the data is fresh, the averages represent one minute spans of time; however, after a certain amount of time has passed we typically don’t need such high granularity. So, the one minute averages get rolled up into one hour averages: one data point per hour rather than sixty, which saves on storage but sacrifices some fidelity. With events, though, this is never true. Each individual event is stored until it’s deleted. 

Limitations on metrics

You get a lot of information from metrics in a really compact, cost-effective format. So, why wouldn’t we use metrics all the time? Well, simply put, metrics require careful decision making. For example, if you knew ahead of time you wanted to know the 50th percentile (median) and the 95th percentile of the metric you’re capturing, you could instrument that, collect it on all of your aggregates, and then graph it. But let’s say you wanted to know the 95th percentile for just the data of a particular item in the vending machine. You can’t calculate that after the fact; you would need all the raw sample events to do that. So, for metrics, you have to make decisions ahead of time on how you want to analyze the data and set it up to support that analysis.

Part 3: Logs

It’s not a stretch to say that logs are the original data type. In their most fundamental form, logs are essentially just lines of text a system produces when certain code blocks get executed. Developers rely on them heavily in order to troubleshoot their code and to retroactively verify and interrogate the code’s execution. In fact, logs are incredibly valuable for troubleshooting things like databases, caches, load balancers, or older proprietary systems that aren’t friendly to in-process instrumentation.

Similar to events, log data is discrete—it’s not aggregated—and can occur at irregular time intervals. Logs are also usually much more granular than events. In fact, one event can correlate to many log lines.

Let’s consider our original vending machine event:

At 3:34pm on 2/21/2019 a bag of BBQ chips was purchased for 1 dollar.

The corresponding log data could look like this:

2/21/2019 15:33:14: User pressed the button ‘B’
2/21/2019 15:33:17: User pressed the button ‘4’
2/21/2019 15:33:17: ‘Tasty BBQ Chips’ were selected
2/21/2019 15:33:17: Prompted user to pay $1.00
2/21/2019 15:33:21: User inserted $0.25 remaining balance is $0.75
2/21/2019 15:33:33: User inserted $0.25 remaining balance is $0.50
2/21/2019 15:33:46: User inserted $0.25 remaining balance is $0.25
2/21/2019 15:34:01: User inserted $0.25 remaining balance is $0.00
2/21/2019 15:34:03: Dispensing item ‘Tasty BBQ Chips’
2/21/2019 15:34:03: Dispensing change: $0.00

Log data is sometimes unstructured, and therefore hard to parse in a systematic way; however, these days you’re more likely to encounter “structured log data” that is formatted specifically to be parsed by a machine. Structured log data makes it easier and faster to search the data and derive events or metrics from the data. 

For instance, if we changed the log line from:

2/21/2019 15:34:03: Dispensing item ‘Tasty BBQ Chips’

To: 

2/21/2019 15:34:03: { actionType: purchaseCompleted, machineId: 2099, itemName: ‘Tasty BBQ Chips’, itemValue: 1.00 }

we could now search logs for purchaseCompleted and parse out the name and value of the item on the fly.

When are logs useful?

Logs are incredibly versatile and have many use cases, and most software systems can emit log data. The most common use case for logs is for getting a detailed, play-by-play record of what happened at a particular time.

Let’s say, for instance, that we have a PurchaseFailed event that looks something like this:

sample event data stored in database

From this, we know that a purchase was attempted and failed for some unforeseen reason at a particular time, but we don’t have any additional attributes that give us insight as to why the purchase failed. The logs, however, may tell us something like this:

2/21/2019 15:33:14: User pressed the button ‘B’
2/21/2019 15:33:17: User pressed the button ‘9’
2/21/2019 15:33:17: ERROR: Invalid code ‘B9’ entered by user
2/21/2019 15:33:17: Failure to complete purchase, reverting to ready state

We now know exactly what went wrong: The user entered an invalid code.

Example: Logs in New Relic

New Relic Logs are extremely useful for troubleshooting errors as soon as they occur.

For example, in our “WebPortal” application, we see an error message for an invalid character exception:

logging error example screenshot

From here, we can click See Logs, and New Relic One presents us logs from that specific error transaction:

logging error transaction example screenshot

In this case, we see that a user passed an incorrect username—they simply mistyped a character.

Part 4: Traces

Traces—or more precisely, “distributed traces”—are samples of causal chains of events (or transactions) between different components in a microservices ecosystem. And like events and logs, traces are discrete and irregular in occurrence.

Let’s say our vending machine accepts cash and credit cards. If a user makes a purchase with a credit card, the transaction has to flow through the vending machine via a backend connection, contact the credit card company, and then contact the issuing bank.

In monitoring the vending machine, we could easily set up an event that looks something like this:

sample event data stored in database

This event tells us that an item was purchased via credit card at a particular time, and it took 23 seconds to complete the transaction. But what if 23 seconds is too long? Was it our backend service, the credit card company’s service, or the issuing bank’s service slowing things down? Questions like this are exactly what traces are meant to address.

How do traces work?

Traces stitched together form special events called “spans”; spans help you track a causal chain through a microservices ecosystem for a single transaction. To accomplish this, each service passes correlation identifiers, known as “trace context,” to each other; this trace context is used to add attributes on the span.

So, an example distributed trace composed of the spans in our credit card transaction might look like this:

sample event data stored in database

If we look at the Timestamp and Duration data, we can see that the slowest service in the transaction is the credit card company’s; it’s taking 12 of the 23 seconds—that’s over half the time for this entire trace!

How’d we get 12 seconds? The span to contact the issuing bank is what we call a child span, the span to contact the credit card company is its parent. So if the bank request took 3 seconds, and the credit card company took 15 seconds, and we subtract the child from the parent, we see that it took 12 seconds to process the credit card transaction—over half the total time of the trace.

When should you use traces?

Trace data is needed when you care about the relationships between services/entities. If you only had raw events for each service in isolation, you’d have no way of reconstructing a single chain between services for a particular transaction.

Additionally, applications often call multiple other applications depending on the task they’re trying to accomplish; they also often process data in parallel, so the call-chain can be inconsistent and timing can be unreliable for correlation. The only way to ensure a consistent call-chain is to pass trace context between each service to uniquely identify a single transaction through the entire chain.

Example: distributed tracing in New Relic

New Relic One captures trace data via its distributed tracing feature.

distributed tracing example dashboard

In this particular example, our “WebPortal” application has a page called purchase/confirmation.jsp. This page calls the “Fulfillment Service,” which calls the “Billing Service,” which calls the “Shipping Service.” Each colored rectangle denotes how long a nested service call lasted; the longer the rectangle, the more time spent in that particular service.

Redefine how you ask “Why?”

It doesn’t matter if you’re just getting started with observability or are a seasoned DevOps pro—understanding the use cases for each M.E.L.T. data type is an essential part of building your observability practice.

Once you understand these data types, you’ll better understand how to work with an observability platform like New Relic One to connect your telemetry data—be it open source or vendor-specific—to understand relationships and make sense of the data as it relates to your business. When you can visualize dependencies and drill down through telemetry types, in real time, you can more quickly and easily resolve system problems and prevent those issues from ever again occurring in your applications and infrastructure. This is how you ensure reliability.

With New Relic One—the industry’s first observability platform that is open, connected, and programmable—we’re redefining how you ask why and what’s possible in observability. And it all starts with M.E.L.T.

More perfect software

Try New Relic One today and start building better, more resilient software experiences. Visit newrelic.com/platform.