
White Paper

MELT 101
An introduction to the four essential telemetry data types

02

Table of Contents

INTRODUCTION� 03

PART 1: EVENTS� 04

How are events used?� 04

Example: Using events in New Relic� 05

Limitations on events� 06

PART 2: METRICS� 07

Metrics vs. events� 08

Example: Using metrics in New Relic� 08

Limitations on metrics� 09

PART 3: LOGS� 10

When are logs useful?� 11

Example: Logs in New Relic� 11

PART 4: TRACES� 12

How do traces work?� 12

When should you use traces?� 13

Example: distributed tracing in New Relic� 13

Redefine how you ask “Why?”� 14

MELT 101: An introduction to the four essential telemetry data types

03

Introduction

Observability has transformed the world of
monitoring, and for good reason. Thanks to an
abundance of available tools, it’s easier than
ever to ship code, but that also means software
environments are more complex than they’ve
ever been. As our software development prac-
tices have evolved, so have our systems. It’s no
longer enough to ask if something is wrong in our
software stack; we must now also ask why. This
is the fundamental function of observability.

To achieve observability, you need to instrument
everything and view all your telemetry data in one
place—and there are plenty of ongoing debates
about the best ways to do this. At New Relic, we
believe that metrics, events, logs and traces
(or MELT for short) are the essential data types
of observability. When we instrument every-
thing and use MELT to form a fundamental, work-
ing knowledge of connections—the relationships
and dependencies within our system—as well
as its detailed performance and health, we’re
practicing observability.

If you’re just getting started with observability,
though, the full value of MELT might not be com-
pletely clear. There’s a good chance you’ve heard
these terms before, but can you confidently
describe the differences among them?

Starting with a simple vending machine anal-
ogy, this guide will walk you through an explana-
tion of metrics, events, logs, and traces, and will
demonstrate:

•	 How they differ from one another

•	 When to use one versus another

•	 How they’re used in New Relic One, the first
observability platform

Note that we start with events because they
are the most critical data type for observ-
ability. Events are distinct from logs—they are
discrete, detailed records of significant points
of analysis but provide a higher level of
abstraction than the details provided by logs.
Alerts are events. Deployments are events. So
are transactions and errors. Events provide the
ability to do fine-grained analysis in real time.

MELT 101: An introduction to the four essential telemetry data types

04

Conceptually, an event can be defined as a dis-
crete action happening at a moment in time. So, to
start with our vending machine analogy, we could
define an event to capture the moment when
someone makes a purchase from the machine:

At 3:34pm on 2/21/2019, a bag of BBQ chips was pur-
chased for $1.

See Fig. 1 above to view what event data could look
like stored in a database.

We could also define events for actions that do
not include a customer, such as when a vendor
refilled the machine, or for states that are derived
from other events, such as an item becoming “sold
out” after a purchase.

You can choose which attributes are important
to send when defining an event. There’s no hard-

-and-fast rule about what data an event can con-
tain—you define an event as you see fit. In New
Relic, for example, all events have at least a
Timestamp and an EventType attribute.

You can also attach multiple measurements as
attributes to a single event (although at New Relic,
a better way to report metrics would be to use the
metric telemetry type, explained in Part 2: Metrics).

How are events used?
Events are valuable, because you can use them to
confirm that a particular action occurred at a par-
ticular time. For example, we may want to know the
last time our machine was refilled. Using events,
we can look at the most recent timestamp from
the Refilled event type and answer this question
immediately.

Because events are basically a history of every
individual thing that happened in your system, you
can roll them up into aggregates to answer more
advanced questions on the fly.

Continuing our PurchaseEvent example from
above, imagine that we had the following events
stored (see Fig. 2).

Part 1: Events

Timestamp EventType ItemPurchased Value

2/21/2019 PurchaseEvent BBQ chips 1.00

Fig. 1

Timestamp EventType ItemPurchased Value

2/21/2019 15:34:00 PurchaseEvent BBQ chips 1.00

2/21/2019 16:37:00 PurchaseEvent Pretzels 1.00

2/22/2019 7:14:00 PurchaseEvent Sour cream chips 0.75

2/24/2019 11:52:00 PurchaseEvent Water 1.50

Fig. 2

MELT 101: An introduction to the four essential telemetry data types

05

With this data, we could answer practical questions
like, “How much money have I made this week?”

Because we have a history of every purchase event
stored, we can simply sum the Value column and
see that we’ve made $4.25.

Events become more powerful when you add
more metadata to them. For example, we could
add additional attributes, such as ItemCategory
and PaymentType, so we could run faceted queries
against our PurchaseEvent data (see Fig. 3).

Now we can ask questions such as:

•	 How much money did I make off of each item
category? (Snacks: $2.75, Drinks: $1.50)

•	 How often do people use different payment
types? (Cash: 3, CreditCard: 1).

•	 How much money did I make per day? (2/21:
$2.00, 2/22: $0.75, 2/23: $0, 2/24: $1.50)

Example: Using
events in New Relic
In this example, let’s say we’re a telco and have
multiple customers reporting crashes in our mobile
application, “ACME Telco -Android”, and it’s time to
do some analysis.

Since we’ve deployed the New Relic Mobile agent,
which captures crash data for any app it’s moni-
toring, we can access the raw underlying Mobile-
Crash event data in New Relic.

In the New Relic One chart builder, we’ll run the
following query:

SELECT * FROM MobileCrash

Each row in the following table corresponds to a
specific crash event that occurred for a particular
user at some point.

Now, let’s say we wanted to ask more useful
questions about this data. For example, we might
want to know if our app was crashing more
often on a particular manufacturer’s devices
during the past day.

Timestamp EventType ItemPurchased ItemCategory Value PaymentType

2/21/2019 15:34:00 PurchaseEvent BBQ chips Snacks 1.00 Cash

2/21/2019 16:37:00 PurchaseEvent Pretzels Snacks 1.00 Cash

2/21/2019 7:14:00 PurchaseEvent Sour

cream chips

Snacks 0.75 CreditCard

2/24/2019 11:52:00 PurchaseEvent Water Drinks 1.50 Cash

Fig. 3

https://newrelic.com/products/mobile-monitoring
https://docs.newrelic.com/docs/chart-builder/use-chart-builder/get-started/introduction-chart-builder

MELT 101: An introduction to the four essential telemetry data types

06

Here, we’d run the following query in chart builder:

SELECT count(*) FROM MobileCrash WHERE
appName = 'Acme Telco -Android' FACET device-
Manufacturer SINCE 1 day AGO

From the results, we can see pretty clearly that
the particular application has failed almost three
times more often for Manufacturer A’s line of
devices in the past day (See Fig. 4).

Limitations on events
You may be thinking events sound awesome
(“Let’s collect one of everything that happens all
the time!”). Well, event collection comes with a
cost. Every event takes some amount of compu-
tational energy to collect and process. They also
take up space in your database—potentially lots of
space. So for relatively infrequent things, like
a purchase in a vending machine, events are
great, but we wouldn’t want to collect an event for
everything the vending machine does. For
example, let’s say that you want to keep a history
of the temperature in the vending machine. You
could store an event for every minuscule, sub-
degree shift in temperature, which would quickly

fill up even the largest databases. Or you could
instead take a sample of the temperature at a
regular interval. This kind of data is better stored
as a metric.

Fig. 4

MELT 101: An introduction to the four essential telemetry data types

07

To put it simply, metrics are numeric measure-
ments. Metrics can include:

•	 A numeric status at a moment in time (like
CPU % used)

•	 Aggregated measurements (like a count of
events over a one-minute time, or a rate of
events-per-minute)

The types of metric aggregation are diverse
(for example, average, total, minimum, maximum,
sum-of-squares), but all metrics generally share
the following traits:

•	 A name

•	 A timestamp

•	 One or more numeric values

A specific example of a metric might look like this:

For the minute of 3:34-3:35pm on 2/21/2019, there
were three purchases totaling $2.75.

This metric would be represented in a database as
a single row of data (as shown in Fig. 5).

You’ll often see multiple values calculated in a
single row to represent different metrics that
share the same name, timestamp, and count;
in this case, we’re tracking both the Total
purchase value as well as the Average pur-
chase value.

Notice that we’ve lost some detail here com-
pared to reporting event data. We no longer know
what the specific three purchases were, nor do
we have access to their individual values (and
this data cannot be recovered). However, this
approach requires significantly less storage but
still allows us to ask certain critical questions like,

“What were my sales over a specific range of time?”

At a practical level, this is the primary difference
between metrics and events.

Part 2: Metrics

Timestamp Count MetricName Total Average

2/21/2019 15:34:00 3 PurchaseValue 2.75 .92

Fig. 5

MELT 101: An introduction to the four essential telemetry data types

08

Metrics vs. events
So, what are the pros and cons of metrics
and events?

Events

Metrics

Pros

•	 Store significantly less data

•	 Take less time to compute roll-ups

Cons

•	 Require you to decide how to analyze the
data ahead of time

Metrics work well for large bodies of data or
data collected at regular intervals when you know
what you want to ask ahead of time, but they are

less granular than event data. Events are useful
when the data is relatively small or sporadic in
nature, or when you don’t know the specific aggre-
gates you want to see ahead of time. And each
individual event is stored until it’s deleted. (Note
that New Relic does allow you to turn event data
into metric data.)

Example: Using
metrics in New Relic
Alongside metrics gathered by New Relic agents,
customers can also send metrics from open
source tools—such as Prometheus, Microm-
eter, and DropWizard—and the metrics data
they tend to find helpful includes error rate,
response time, and throughput. In the screenshot
below, we see a 12-hour window for an application
called “WebPortal.”

Notice how all the lines are very jagged? This
implies a higher level of fidelity in the data.

Pros

•	 Include individual data points

•	 Allow you to ask whatever questions you
want at any point

•	 Can be computed on the fly

Cons

•	 Expensive to store high volumes of event data

•	 May hit bandwidth constraints within the
source system while collecting and sending
event data

•	 Can be time-consuming to query

https://docs.newrelic.com/docs/data-ingest-apis/get-data-new-relic/metric-api/introduction-events-metrics-service
https://docs.newrelic.com/docs/data-ingest-apis/get-data-new-relic/metric-api/introduction-events-metrics-service
https://prometheus.io/
https://micrometer.io/
https://micrometer.io/
https://www.dropwizard.io/en/latest/

MELT 101: An introduction to the four essential telemetry data types

09

Now let’s look at another 12-hour window for the
same metrics, captured two weeks ago:

Notice how the lines have smoothed out? This is
because the metrics have been further aggre-
gated over time. When the data is fresh, this data
represents one-minute spans of time; however,
after a certain amount of time has passed, we
typically don’t need such high granularity. So, the
minute averages get rolled up into hour averages:
one data point per hour rather than 60, which
saves on storage but sacrifices some detail.

Limitations on metrics
You get a lot of information from metrics in a
really compact, cost-effective format. So, why
wouldn’t we use metrics all the time? Well, simply
put, metrics require careful decision-making. For
example, if you knew ahead of time you wanted
to know the 50th percentile (median) and the
95th percentile of the metric you’re capturing,
you could instrument that, collect it on all of your
aggregates, and then graph it. But let’s say you
wanted to know the 95th percentile for just the
data of a particular item in the vending machine.
You can’t calculate that after the fact; you
would need all the raw sample events to
do that. So, for metrics, you must decide
ahead of time about how you want to analyze the
data and set it up to support that analysis.

https://docs.newrelic.com/docs/accounts/accounts/data-management/data-retention-components#
https://docs.newrelic.com/docs/accounts/accounts/data-management/data-retention-components#

MELT 101: An introduction to the four essential telemetry data types

10

It’s not a stretch to say that logs are the origi-
nal data type. In their most fundamental form,
logs are essentially just lines of text a system
produces when certain code blocks get exe-
cuted. Developers rely on them heavily in order to
troubleshoot their code and to retroactively verify
and interrogate the code’s execution. In fact,
logs are incredibly valuable for troubleshooting
databases, caches, load balancers, or older
proprietary systems that aren’t friendly to in-
process instrumentation, to name a few.

Similar to events, log data is discrete—it’s not
aggregated—and can occur at irregular time
intervals. Logs are also usually much more
granular than events. In fact, one event can
correlate to many log lines.

Let’s consider our original vending machine event:

At 3:34pm on 2/21/2019 a bag of BBQ chips was pur-
chased for $1.

The corresponding log data might look like the
data in Fig. 6.

Log data is sometimes unstructured, and
therefore hard to parse in a systematic way; how-
ever, these days you’re more likely to encounter

“structured log data” that is formatted specifi-
cally to be parsed by a machine. Structured log
data makes it easier and faster to search the
data and derive events or metrics from the data.

Part 3: Logs

1 2/21/2019 15:33:14: User pressed the button ‘B’

2 2/21/2019 15:33:17: User pressed the button ‘4’

3 2/21/2019 15:33:17: ‘Tasty BBQ Chips’ were selected

4 2/21/2019 15:33:17: Prompted user to pay $1.00

5 2/21/2019 15:33:21: User inserted $0.25 remaining balance is $0.75

6 2/21/2019 15:33:33: User inserted $0.25 remaining balance is $0.50

7 2/21/2019 15:33:46: User inserted $0.25 remaining balance is $0.25

8 2/21/2019 15:34:01: User inserted $0.25 remaining balance is $0.00

9 2/21/2019 15:34:03: Dispensing item ‘Tasty BBQ Chips’

10 2/21/2019 15:34:03: Dispensing change: $0.00

Fig. 6

MELT 101: An introduction to the four essential telemetry data types

11

For instance, if we changed the log line from:

2/21/2019 15:34:03: Dispensing item ‘Tasty
BBQ Chips’

To:

2/21/2019 15:34:03: { actionType: purchase
Completed, machineId: 2099, itemName: ‘Tasty
BBQ Chips’, itemValue: 1.00 }

We could now search logs for purchaseCompleted
and parse out the name and value of the item
on the fly.

When are logs useful?
Logs are incredibly versatile and have many use
cases, and most software systems can emit log
data. The most common use case for logs is for
getting a detailed, play-by-play record of what
happened at a particular time.

Let’s say, for instance, that we have a Purchase-
Failed event that looks something like this:

Timestamp Count

2/21/2019 15:33:17 PurchaseFailedEvent

From this, we know that a purchase was attempted
and failed for some unforeseen reason at a partic-
ular time, but we don’t have any additional attri-
butes that give us insight as to why the purchase
failed. The logs, however, may tell us something like
the data in Fig. 7:

We now know exactly what went wrong: The user
entered an invalid code.

Example: Logs in New Relic
New Relic Logs are extremely useful for trouble-
shooting errors as soon as they occur.

For example, in our “WebPortal” application, we
see an error message for an invalid character
exception:

From here, we can click See Logs, and New Relic
One presents us logs from that specific error
transaction:

In this case, we see that a user passed an incorrect
username—they simply mistyped a character.

1 2/21/2019 15:33:14: User pressed the button ‘B’

2 2/21/2019 15:33:17: User pressed the button ‘9’

3 2/21/2019 15:33:17: ERROR: Invalid code ‘B9’ entered by user

4 2/21/2019 15:33:17: Failure to complete purchase, reverting to ready state

Fig. 7

MELT 101: An introduction to the four essential telemetry data types

12

Part 4: Traces

Traces—or more precisely, “distributed traces”—are
samples of causal chains of events (or transac-
tions) between different components in a micro-
services ecosystem. And like events and logs,
traces are discrete and irregular in occurrence.

Let’s say our vending machine accepts cash and
credit cards. If a user makes a purchase with a
credit card, the transaction has to flow through
the vending machine via a backend connec-
tion, contact the credit card company, and then
contact the issuing bank.

In monitoring the vending machine, we could
easily set up an event that looks something like
Fig. 8.

This event tells us that an item was purchased
via credit card at a particular time, and it took 23
seconds to complete the transaction. But what if
23 seconds is too long? Was it our backend service,
the credit card company’s service, or the issuing
bank’s service slowing things down? Questions like
this are exactly what traces are meant to address.

How do traces work?
Traces that are stitched together form special
events called “spans”; spans help you track a
causal chain through a microservices ecosystem
for a single transaction. To accomplish this, each
service passes correlation identifiers, known as

“trace context,” to each other; this trace context
is used to add attributes on the span.

Timestamp EventType Duration

2/21/2019 15:34:00 CreditCardPurchase 3

Fig. 8

Fig. 9

Timestamp EventType TraceID SpanID ParentID ServiceID Value Duration

2/21/2019

15:34:23

Span 2ec68b32 aaa111 Vending

Machine

1.00 23

2/21/2019

15:34:22

Span 2ec68b32 bbb111 aaa111 Vending

Machine Backend

1.00 18

2/21/2019

15:34:20

Span 2ec68b32 ccc111 bbb111 Credit Card

Company

0.75 15

2/21/2019

11:34:19

Span 2ec68b32 ddd111 ccc111 Issuing

Bank

1.50 3

MELT 101: An introduction to the four essential telemetry data types

13

So, an example of distributed trace composed of
the spans in our credit card transaction might
look like Fig. 9:

If we look at the Timestamp and Duration data, we
can see that the slowest service in the transaction
is the credit card company’s; it’s taking 12 of the 23
seconds—that’s more than half the time for this
entire trace!

How’d we get 12 seconds? The span to con-
tact the issuing bank is what we call a child
span, the span to contact the credit card
company is its parent. So if the bank request
took 3 seconds, and the credit card com-
pany took 15 seconds, and we subtract
the child from the parent, we see that it
took 12 seconds to process the credit card
transaction—more than half the total time
of the trace.

When should you
use traces?
Trace data is needed when you care about the rela-
tionships between services/entities. If you only had
raw events for each service in isolation, you’d have
no way of reconstructing a single chain between
services for a particular transaction.

Additionally, applications often call multiple other
applications depending on the task they’re trying
to accomplish; they also often process data in
parallel, so the call-chain can be inconsistent
and timing can be unreliable for correlation. The
only way to ensure a consistent call-chain is
to pass trace context between each service to
uniquely identify a single transaction through
the entire chain.

Example: Distributed
tracing in New Relic
New Relic One captures trace data via its distrib-
uted tracing feature (See Fig 10).

Fig. 10

© Copyright 2020, New Relic, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. 05.2020

MELT 101: An introduction to the four essential telemetry data types

In this particular example, our “WebPortal” appli-
cation has a page called purchase/confirmation.
jsp. This page calls the “Fulfillment Service,” which
calls the “Billing Service,” which calls the “Shipping
Service.” Each colored rectangle denotes how
long a nested service call lasted; the longer the
rectangle, the more time spent in that particu-
lar service.

Redefine how you
ask “Why?”
It doesn’t matter if you’re just getting started
with observability or are a seasoned DevOps
pro—understanding the use cases for each MELT
data type is an essential part of building your
observability practice.

Once you understand these data types, you’ll bet-
ter understand how to work with an observability
platform such as New Relic One to connect your
telemetry data—be it open source or vendor-
specific—to understand relationships and make
sense of the data as it relates to your business.
When you can visualize dependencies and view
detailed telemetry data in real time, you can more
quickly and easily resolve system problems and
prevent those issues from occurring again in your
applications and infrastructure. This is how you
ensure reliability.

With New Relic One—the industry’s first observ-
ability platform that is open, connected, and
programmable—we’re redefining how you ask
why and what’s possible in observability. And it all
starts with MELT.

To learn more about these data types and how
they’re used in New Relic, check out our data types
documentation.

More perfect software

Try New Relic One today and start building better,
more resilient software experiences. Visit newrelic.
com/platform.

https://docs.newrelic.com/docs/using-new-relic/data/understand-data/new-relic-data-types
https://docs.newrelic.com/docs/using-new-relic/data/understand-data/new-relic-data-types
https://newrelic.com/platform
https://newrelic.com/platform

	Introduction
	Part 1: Events
	How are events used?
	Example: Using events in New Relic
	Limitations on events

	Part 2: Metrics
	Metrics vs. Events
	Example: Using metrics in New Relic
	Limitations on metrics

	Part 3: Logs
	When are logs useful?
	Example: Logs in New Relic

	Part 4: Traces
	How do traces work?
	When should you use traces?
	Example: distributed tracing in New Relic
	Redefine how you ask “Why?”

